
 

 

 

Integrated Measurement and Analysis 

Framework for Software Security 

Christopher Alberts 

Julia Allen  

Robert Stoddard 

 

 

September 2010 

TECHNICAL NOTE 
CMU/SEI-2010-TN-025 

CERT
®
 Program 

Unlimited distribution subject to the copyright. 

http://www.sei.cmu.edu 

 

http://www.sei.cmu.edu


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
SEP 2010 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2010 to 00-00-2010  

4. TITLE AND SUBTITLE 
Integrated Measurement and Analysis Framework for Software Security 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Carnegie Mellon University,Software Engineering 
Institute,Pittsburgh,PA,15213 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
In today?s business and operational environments, multiple organizations routinely work collaboratively to
acquire, develop, deploy, and maintain technical capabilities via a set of interdependent, networked
systems. Measurement in these distributed management environ-ments can be an extremely challenging
problem. The CERT? Program, part of Carnegie Mellon University?s Software Engineering Insti-tute
(SEI), is developing the Integrated Measurement and Analysis Framework (IMAF) to enable effective
measurement in distributed environments, including acquisition programs, supply chains, and systems of
systems. The IMAF defines an approach that integrates subjective and objective data from multiple
sources (targeted analysis, reports, and tactical measurement) and provides decision makers with a
consolidated view of current conditions. This report is the first in a series that addresses how to measure
software security in complex environments. It poses several research questions and hypotheses and
presents a foundational set of measurement concepts. It also describes how meaningful measures provide
the information that decision makers need when they need it and in the right form. Finally, this report
provides a conceptual overview of the IMAF, describes methods for qualitatively and quantitatively
collecting data to inform the framework, and suggests how to use the IMAF to derive meaningful measures
for analyzing software security performance. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

77 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



 

 

This report was prepared for the 

SEI Administrative Agent 

ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2100 

The ideas and findings in this report should not be construed as an official DoD position. It is published in the 

interest of scientific and technical information exchange. 

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally 

funded research and development center sponsored by the U.S. Department of Defense. 

Copyright 2010 Carnegie Mellon University.  

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF 

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED 

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 

COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 

Internal use. Permission to reproduce this document and to prepare derivative works from this document for 

internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions 

and derivative works. 

External use. This document may be reproduced in its entirety, without modification, and freely distributed in 

written or electronic form without requesting formal permission.  Permission is required for any other external 

and/or commercial use.  Requests for permission should be directed to the Software Engineering Institute at 

permission@sei.cmu.edu. 

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with 

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research 

and development center. The Government of the United States has a royalty-free government-purpose license to 

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, 

for government purposes pursuant to the copyright license under the clause at 252.227-7013. 

mailto:permission@sei.cmu.edu


 

CMU/SEI-2010-TN-025 | i 

Table of Contents 

Acknowledgments vii 

Abstract ix 

1 Introduction 1 

2 Measurement Concepts 7 
2.1 Measurement Process 8 

2.1.1 Establish and Sustain Measurement Commitment 10 
2.1.2 Plan for Measurement 10 
2.1.3 Perform Measurement 11 
2.1.4 Evaluate the Measurement Process 11 

2.2 Using Information to Support Decision Making 11 

3 Distributed Management Environments 14 

4 Analyzing Performance in a Distributed Management Environment 17 
4.1 System Decomposition and Event Analysis 17 
4.2 Systemic Analysis 19 

5 Mission-Objective-Driver (MOD) Analysis 21 
5.1 Driver Identification 21 

5.1.1 Mission 21 
5.1.2 Objectives 21 
5.1.3 Drivers 22 
5.1.4 Deriving a Set of Drivers 23 
5.1.5 A Standard Set of Drivers for Software Security 24 
5.1.6 Tailoring an Existing Set of Drivers 25 

5.2 Driver Analysis 26 
5.3 Driver Profile 28 

6 Integrated Measurement and Analysis Framework (IMAF) 31 
6.1 Qualitative Implementation of the IMAF 32 
6.2 Quantitative Implementation of the IMAF 33 
6.3 Aligning Drivers with Software Security Codes of Practice 36 

7 Insights and Next Steps 42 
7.1 Summary 42 
7.2 Surprises and Insights 42 
7.3 Research Directions 44 

Appendix A: Standard Set of Drivers for Software Security 45 

Appendix B: Related Sources and Efforts 57 

Glossary 59 

References 61 

 

  



 

CMU/SEI-2010-TN-025 | ii 

 



 

CMU/SEI-2010-TN-025 | iii 

List of Figures 

Figure 1: Measurement Process [ISO 2007] 9 

Figure 2: Measurement Must Focus on Effective Decision Making 12 

Figure 3: Acquisition Program 15 

Figure 4: Decision Making in Interactively Complex Socio-Technical Systems 18 

Figure 5: Decision Making Using Systemic Analysis 19 

Figure 6: Relationships Among Objectives and Drivers 24 

Figure 7: Driver Question and Range of Responses 26 

Figure 8: Driver Value Criteria 27 

Figure 9: Analyzed Driver 28 

Figure 10: Driver Profile: Programmatic Drivers 29 

Figure 11: Driver Profile: Product Drivers 30 

Figure 12: Integrated Measurement and Analysis Framework (IMAF) 31 

Figure 13: MOD Assessment 32 

Figure 14: Notional Bayesian Belief Network Showing Security Entity Relationships with a Security 
Objective 34 

Figure 15: Aligning Drivers with Software Security Codes of Practice 37 

 



 

CMU/SEI-2010-TN-025 | iv 



 

CMU/SEI-2010-TN-025 | v 

List of Tables 

Table 1: Example Software Security Measures by Life-Cycle Phase 4 

Table 2: Driver States 23 

Table 3: Prototype Set of Driver Questions for Software Security 25 

Table 4: Align Drivers with Software Security Codes of Practice 38 

Table 5: Part 1 Example for Driver 10 Security Requirements: Do Requirements Sufficiently 
Address Security? 40 

 

  



 

CMU/SEI-2010-TN-025 | vi 

 



 

CMU/SEI-2010-TN-025 | vii 

Acknowledgments 

The authors thank Archie Andrews, Carol Woody, and Dave Zubrow for their sponsorship and 

support of this work and for their review comments. We thank Michele Moss of Booz Allen Ham-

ilton for her review comments that prompted the inclusion of Appendix B, and the chief scientist 

of the Software Engineering Institute’s (SEI’s) CERT
®

 Program, Greg Shannon, for asking us the 

question that resulted in Section 7.2: ―What has surprised you the most so far?‖ We also thank 

Audrey Dorofee for her technical contribution to the development of the MOD Analysis Method 

as part of the SEI’s Mission Success in Complex Environments (MSCE) special project. Finally, 

the authors thank the SEI’s CERT and Acquisition Support Programs for providing the funding to 

conduct this research effort.  

  



 

CMU/SEI-2010-TN-025 | viii 

 



 

CMU/SEI-2010-TN-025 | ix 

Abstract 

In today’s business and operational environments, multiple organizations routinely work collabo-

ratively to acquire, develop, deploy, and maintain technical capabilities via a set of interdepen-

dent, networked systems. Measurement in these distributed management environments can be an 

extremely challenging problem. The CERT
®

 Program, part of Carnegie Mellon University’s 

Software Engineering Institute (SEI), is developing the Integrated Measurement and Analysis 

Framework (IMAF) to enable effective measurement in distributed environments, including ac-

quisition programs, supply chains, and systems of systems. The IMAF defines an approach that 

integrates subjective and objective data from multiple sources (targeted analysis, reports, and tac-

tical measurement) and provides decision makers with a consolidated view of current conditions. 

This report is the first in a series that addresses how to measure software security in complex en-

vironments. It poses several research questions and hypotheses and presents a foundational set of 

measurement concepts. It also describes how meaningful measures provide the information that 

decision makers need when they need it and in the right form. Finally, this report provides a con-

ceptual overview of the IMAF, describes methods for qualitatively and quantitatively collecting 

data to inform the framework, and suggests how to use the IMAF to derive meaningful measures 

for analyzing software security performance. 

  



 

CMU/SEI-2010-TN-025 | x 

 



 

CMU/SEI-2010-TN-025 | 1 

1 Introduction 

Scientist Lord Kelvin said, ―When you can measure what you are speaking about, and express it 

in numbers, you know something about it; but when you cannot measure it, when you cannot ex-

press it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the begin-

ning of knowledge, but you have scarcely in your thoughts advanced to the stage of science.‖
1
 He 

also is quoted as having said, ―When you cannot measure it, you cannot improve it.‖
2
 

Many organizations measure just for the sake of measuring, with little or no thought given to what 

purpose and business objectives are being satisfied or what questions each measure is intended to 

inform. Meaningful measurement is about transforming strategic direction, policy, and other 

forms of management decision into action and measuring the performance of such action. Accord-

ing to the Corporate Information Security Working Group, ―Visible measures provide a positive 

influence on human behavior by invoking the desire to succeed and compare favorably with one’s 

peers‖ [CISWG 2005].  

The right measures express the extent to which objectives are being met, how well requirements 

are being satisfied, how well processes and controls are functioning, and the extent to which per-

formance outcomes are being achieved. The general purpose of measurement and analysis is to 

provide decision makers with the information they need when they need it and in the right form.  

For researchers, the purpose of measurement and analysis is to enable the testing of hypotheses 

while examining individual cause-effect or leading-indicator relationships. Such relationships 

eventually form a holistic model that can be used to predict the extent to which software security 

objectives can be achieved.    

Since the mid-1990s, the CERT
®

 Program at Carnegie Mellon University’s Software Engineering 

Institute (SEI) has researched and created value-added processes, methods, practices, and tools for 

software survivability, software assurance, and building security into software throughout its de-

velopment life cycle. In recent years, the research community has increasingly contributed to the 

body of knowledge about software assurance and software security measures and indicators.
3
  

Unfortunately, the security community often assumes that information security includes software 

security, and thus that information security measures include software security measures. These 

disciplines are, in fact, quite distinct, as expressed in the following definitions from the Commit-

tee on National Security Systems’ National Information Assurance Glossary [CNSS 2010], 

Information security: The protection of information and information systems from unautho-

rized access, use, disclosure, disruption, modification, or destruction in order to provide 

confidentiality, integrity, and availability.  

 
1
  http://en.wikiquote.org/wiki/William_Thomson 

2
  http://zapatopi.net/kelvin/quotes/ 

®
 CERT is a registered mark owned by Carnegie Mellon University. 

3
  In this report, we use the terms measures and indicators rather than metrics. The ISO measurement community 

has discontinued use of the term metrics because it has become overloaded in use and meaning. 

http://en.wikiquote.org/wiki/William_Thomson
http://zapatopi.net/kelvin/quotes/


 

CMU/SEI-2010-TN-025 | 2 

Software assurance: Level of confidence that software is free from vulnerabilities, either in-

tentionally designed into the software or accidentally inserted at anytime during its lifecycle 

and that the software functions in the intended manner.  

and the following definition from Software Assurance Curriculum Project Volume I: Master of 

Software Assurance Reference Curriculum [Mead 2010]: 

Software security: Engineering software so that it is as vulnerability- and defect-free as 

possible and continues to function correctly in spite of attack or misuse. 

Information security (and its measurement) focuses on protecting the confidentiality, availability, 

and integrity of information and information systems in operational production environments. By 

contrast, software security (and its measurement) focuses on a much earlier phase in the system 

development and system acquisition life cycles. While information security measures and soft-

ware security measures inform and influence one another, they are not the same thing. 

Efforts to identify and deploy meaningful information and operational security measures have 

been occurring for some time. These efforts include various reports by the U.S. National Institute 

of Standards and Technology [Chew 2008], the Workshop on the Economics of Information Se-

curity (WEIS) [WEIS 2010], and consensus efforts such as those conducted by the Center for In-

ternet Security [CIS 2010] and the Corporate Information Security Working Group [CISWG 

2005]. Corresponding efforts to identify and deploy meaningful software security measures have 

yet to materialize in any substantive fashion, although foundational definition work has been per-

formed (refer to Appendix B). Significant work has been done to identify practices for developing 

more secure software (refer to Section 6.3), but work is still emerging that measures the extent to 

which such practices increase confidence or ensure that software will function more securely in its 

operational environment (as defined above). 

Consequently, in Fiscal Year
4
 2010 (FY10), CERT began new research in software security mea-

surement and analysis that builds on its core competence in software and information security as 

well as the SEI’s Software and Engineering and Process Management Program work in software 

engineering measurement and analysis [SEI 2010]. The purpose of this research project is to ad-

dress the following three questions: 

 Q1: How do we establish, specify, and measure justified confidence that a software product
5
 

is sufficiently secure to meet operational needs? 

 Q2: How do we measure at each phase of the development or acquisition life cycle whether 

the required/desired level of security has been achieved? 

 Q3: How do we scale measurement and analysis approaches to complex environments, such 

as large, distributed systems of systems? 

In essence, these questions ask how we move from uncertainty to justified confidence with respect 

to the security of software in its operational environment. Our intent is that these questions focus 

on ensuring that decision makers (development program and project managers, acquisition pro-

 
4
  The government fiscal year (and thus the SEI fiscal year) runs from October 1 of a given year to September 30 

of the next year. 

5
  For example, a software application, set of applications, software-reliant system, or system of systems. 



 

CMU/SEI-2010-TN-025 | 3 

gram offices) get the information they need when they need it and in the right form to determine 

where best to invest their time and resources.  

Answering the first question will define the baseline against which software security can be 

measured. This will create a meaningful expression of the degree or level of software security for 

a specific set of related software components or systems. Ideally, this expression and its mea-

surement should be generated as part of initial planning and specification, not as an afterthought 

during testing, integration, and deployment. In addition to specifying software security require-

ments, risk analysis approaches, including the prioritization of software components and systems 

based on their contribution to mission success, are also relevant. The SEI has produced promising 

results by applying methods for managing risks and opportunities,
6
 as well as methods such as 

assurance cases
7
 for capturing this expression. The current research project expands upon prior 

work by proposing a measurement and analysis framework that can be applied in single-

organization or single-system environments, as well as interactively complex, socio-technical en-

vironments that span multiple organizational entities where management is distributed. While we 

apply the framework to software security in this report, we are discovering that it is also applica-

ble to other domains of interest such as software supply chain and incident management. 

Given a baseline against which to measure, approaches to the second question will include key 

product measures, process measures, and performance indicators that can be used to validate the 

required level of software security appropriate to a given life-cycle phase. Such measures will be 

developed within the context of a measurement process and framework that can be tailored for a 

specific development project. Table 1 presents hypothetical examples of life-cycle-phase meas-

ures that could aid in demonstrating required levels of software security. A method for selecting 

and deriving such measures is described in Section 6.3. 

 
6
  The SEI’s work in risk and opportunity management is described at http://www.sei.cmu.edu/risk/index.cfm. 

7
  The SEI’s work in assurance cases is described at 

http://www.sei.cmu.edu/dependability/tools/assurancecase/index.cfm. 

http://www.sei.cmu.edu/dependability/tools/assurancecase/index.cfm
http://www.sei.cmu.edu/risk/index.cfm


 

CMU/SEI-2010-TN-025 | 4 

Table 1: Example Software Security Measures by Life-Cycle Phase 

Life-Cycle Phase Example Software Security Measures 

Requirements en-

gineering 

 Percentage of relevant software security principles reflected in requirements specifica-

tions (assuming security principles essential for a given development project have been  

selected) 

 Percentage of security requirements that have been subject to analysis (risk, feasibility, 

cost-benefit, performance tradeoffs) prior to being included in the specification 

 Percentage of security requirements covered by attack patterns, misuse/abuse cases, 

and other specified means of threat modeling and analysis 

Architecture and 

design 

 Percentage of architectural/design components subject to attack-surface analysis and 

measurement 

 Percentage of architectural/design components subject to architectural risk analysis 

 Percentage of high-value security controls covered by security design patterns 

Coding  Percentage of software components subject to static and dynamic code analysis against 

known vulnerabilities and weaknesses 

 Percentage of defects discovered during coding where the defects were injected in archi-

tecture and design or injected in requirements specification 

 Percentage of software components subject to code integrity and handling procedures, 

such as chain of custody verification, anti-tampering, and code signing 

Testing  Percentage of defects discovered during testing where the defects were injected in  

coding, in architecture and design, or in requirements specification 

 Percentage of software components with demonstrated satisfaction of security require-

ments as represented by a range of testing approaches (functional, risk-based, fuzz,  

penetration, black box, white box, code coverage, etc.) 

 Percentage of software components that demonstrated required levels of attack  

resistance and resilience when subject to attack patterns, misuse/abuse cases, and  

other specified means of threat modeling and analysis 

 

The scope of the research project, for FY10 and beyond, is the three research questions stated 

above. In this report, and in FY10, we focus primarily on the first research question to establish a 

sound foundation. We have begun some exploratory work on the second question, which is de-

scribed in Section 6.3. We have yet to commence work on question 3 other than accounting for it 

in the development and definition of the measurement analysis framework that has resulted from 

question 1. 

Report Objective 

In this report, we propose a new measurement and analysis framework that is focused on improv-

ing decision making related to software security. This framework integrates approaches that are 

being used successfully in a wide range of disciplines and offers new approaches that address the 

challenges that arise when considering the large-scale systems of systems and distributed man-

agement environments within which most of today’s software-reliant systems operate. 

This report represents the beginning of a dialogue on the research questions presented above. The 

results presented herein are not conclusive. Section 7, ―Next Steps,‖ summarizes activities in 

FY11 to pilot, analyze, and improve this work. 

Intended Audience 

This report is written for 

 those engaged in research in software security measurement and analysis and related discip-

lines as they apply to meeting the information needs of decision makers 



 

CMU/SEI-2010-TN-025 | 5 

 decision makers who will use the results of this research (This includes managers of pro-

grams seeking to develop and acquire software and software-reliant systems and systems of 

systems.) 

In addition, readers with the following types of experience may find the approaches presented in 

this report to be of interest: 

 software engineering measurement and analysis 

 program and project management 

 organizational decision making 

 risk management  

 process improvement 

 quality assurance 

Report Content 

Section 2, ―Measurement Concepts,‖ summarizes the background and foundations that this re-

search builds upon. It describes a general process for measurement and analysis and identifies 

where this project’s research questions fit within that process. This section introduces Figure 2, 

which describes the role of decision makers and how they currently obtain their information from 

multiple, often voluminous and conflicting, sources. We build upon this figure throughout the 

report as a foundation for the Integrated Measurement and Analysis Framework. 

Section 3, ―Distributed Management Environments,‖ defines key terms used throughout this re-

port (project, system of systems, distributed management environment) and sets the scope of this 

research project. The scope ranges from single-software, single-system, single-organization enti-

ties to multiple independently managed organizational entities working collaboratively to achieve 

a common mission or purpose using software-reliant systems and systems of systems. 

Section 4, ―Analyzing Performance in a Distributed Management Environment,‖ describes how 

the scope and concepts identified in the previous section are applied. It compares and contrasts 

traditional analysis approaches that fall under the broad heading of system decomposition and 

event analysis with broader, more holistic approaches derived from system theory (systemic anal-

ysis). This section makes the case that an approach for measuring performance based on systemic 

analysis is better able to address the challenges that arise in distributed management environ-

ments. That said, both systemic and tactical methods for measuring performance are required. 

Section 5, ―Mission-Objective-Driver (MOD) Analysis,‖ presents a method for performing sys-

temic analysis of interactively complex socio-technical systems across the system development 

and system acquisition life cycles. The two activities that form the foundation of MOD analysis, 

driver identification and driver analysis, are defined and described. A starter set of drivers for 

software security are presented (with supporting details in Appendix A). This section promotes 

the use of drivers as the means for ―connecting the dots‖ in tracing missions to objectives to driv-

ers to measures and practices for software security. 

Section 6, ―Integrated Measurement and Analysis Framework (IMAF),‖ builds upon all prior sec-

tions, presenting the framework that serves as our current response to research question 1. The 

IMAF uses MOD Analysis to integrate subjective and objective data from multiple sources (tar-



 

CMU/SEI-2010-TN-025 | 6 

geted analysis, reports, and tactical measurement) and provide decision makers with a consolidat-

ed view of current conditions. This section describes qualitative and quantitative implementations 

of the framework that will be used when piloting and validating it. It also defines a two-part ap-

proach to analyzing software security codes of practice against the starter set of software security 

drivers, with the objective of defining meaningful measures that will inform decision makers. 

Section 7, ―Insights and Next Steps,‖ describes the research we intend to pursue in FY11. It also 

includes a few thoughts on what has surprised us as we have performed this work.  

  



 

CMU/SEI-2010-TN-025 | 7 

2 Measurement Concepts 

The SEI has engaged in software engineering measurement and analysis for many years, and we 

drew from this body of knowledge to inform this project and report. Goal-Driven Software Mea-

surement—A Guidebook [Park 1996] and the SEI’s website [SEI 2010] state the following as the 

foundation for measurement and analysis:  

Why measure? Because without data, you only have opinions. 

Why analyze? Because the data you collect can't help you if you don't understand it and use 

it to shape your decisions. 

Measurement and analysis involves gathering quantitative data about products, processes, 

and projects and analyzing that data to influence your actions and plans.  

Measurement and analysis activities allow you to 

 characterize, or gain understanding of your processes, products, resources, and 

environments and to establish baselines for comparisons with future assessments. 

 evaluate, to determine your status with respect to your plans. Measures are the sen-

sors that let us know when our projects and processes are drifting off track, so that 

we can bring them back under control. We also evaluate to assess achievement of 

quality goals and to assess the impacts of technology and process improvements on 

products and processes. 

 predict, by understanding relationships among processes and products and build-

ing models of these relationships, so that the values we observe for some attributes 

can be used to predict others. We do this because we want to establish achievable 

goals for cost, schedule, and quality—so that appropriate resources can be applied. 

Predictive measures are also the basis for extrapolating trends, so estimates for 

cost, time, and quality can be updated based on current evidence. Projections and 

estimates based on historical data also help us analyze risks and make design/cost 

tradeoffs. 

 improve, by identifying roadblocks, root causes, inefficiencies, and other oppor-

tunities for improving product quality and process performance. Measures also help 

us plan and track improvement efforts. Measures of current performance give us 

baselines to compare against, so that we can judge whether or not our improvement 

actions are working as intended and what the side effects may be. Good measures 

also help us communicate goals and convey reasons for improving. This helps en-

gage and focus the support of those who work within our processes to make them 

successful. 

Douglas Hubbard in his book How to Measure Anything [Hubbard 2007] defines measurement as 

―a set of observations that reduce uncertainty where the result is expressed as a quantity.‖  Prior to 

measuring, he states that we should ask the following five questions [Hubbard 2007]: 

1. What is the decision that the measurement is supposed to support? 

2. What really is the thing being measured? 

3. Why does this thing matter to the decision being made? 

4. What do you know about it now? 

5. What is the value to measuring it further? 



 

CMU/SEI-2010-TN-025 | 8 

He also states that ―If a measurement matters at all, it is because it must have some conceivable 

effect on decisions and behavior. If we can’t identify what decisions could be affected by a pro-

posed measurement and how that measurement could change them, then the measurement simply 

has no value‖ [Hubbard 2007]. 

With these stated foundations, we describe a general measurement process and how such a 

process and the information it produces can be used to support decision making.  

2.1 Measurement Process 

A process for measurement and analysis (MA) defines, implements, and sustains a measurement 

capability, including its individual activities, that satisfies the information needs of decision mak-

ers within an organizational entity. For the purpose of this research project and report, an organi-

zational entity may be of a size and complexity ranging from a single organization up to and in-

cluding multiple, independently managed organizations that are working collaboratively to 

achieve a common mission such as a global supply chain (refer to Section 3).  

An MA process typically involves the following [CMMI Product Team 2006]: 

 Specify the objectives for measurement and analysis such that they are aligned with identi-

fied information needs and objectives. 

 Specify the measures, analysis techniques, and mechanisms for data collection, data storage, 

data reporting, and feedback. 

 Implement the collection, storage, analysis, and reporting of the data. 

 Provide objective results that can be used in making informed decisions and take appropriate 

corrective actions. 

The types of activities included in an MA process generally include [ISO 2007]: 

 Establish and sustain commitment to the measurement program and process. 

 Plan for measurement. 

 Perform measurement. 

 Evaluate the measurement process. 

 Improve the measurement process and other processes that it informs (in satisfying informa-

tion needs). 

These activities and their relationships are shown in Figure 1, which is adapted from ISO/IEC 

15939:2007 Systems and Software Engineering – Measurement Process [ISO 2007]. A version of 

this figure also appears in Practical Software Measurement: Objective Information for Decision 

Makers [McGarry 2002].  



 

CMU/SEI-2010-TN-025 | 9 

Technical and 

Management 

Processes

User feedback

Establish and 

Sustain 

Commitment

Plan 

Measurement

Perform 

Measurement

Evaluate 

Measurement

Core Measurement Activities

Information products

Information needs

Improvements

Information products

Performance measures

Commitment
Measurement plan

New issues

 

Figure 1: Measurement Process [ISO 2007] 

Successful implementation of an MA process results in the following [ISO 2007]: 

 Commitment for measurement is established and sustained across the organizational 

entity. 

 The information needs of decision makers, and the technical and management processes 

that support them, are identified. 

 An appropriate set of measures driven by the information needs are identified and/or 

developed. 

 Measurement activities are identified. 

 Identified measurement activities are planned. 

 The required data is collected, stored, and analyzed, and the results are interpreted. 

 Information products are used to support decisions and provide an objective basis for 

communication. 

 The measurement process and measures are evaluated. 

 Improvements are communicated to the measurement process owner. 

The research results described in this first report do not address all MA process activities. The 

scope for this effort is the research questions described in Section 1; for FY10, we have focused 

on addressing research question 1, ―How do we establish, specify, and measure justified confi-

dence that a software product is sufficiently secure to meet operational needs?‖  

Research question 1 maps to plan for measurement process activities. Research question 2, ―How 

do we measure at each phase of the development or acquisition life cycle that the required/desired 

level of security has been achieved?‖ maps to perform measurement, which will be an area of fo-

cus for FY11.  

All MA process activities are briefly described here so that plan for measurement and perform 

measurement are presented in the context of the full process. As this work proceeds, all process 

activities will be addressed. Detailed descriptions of each of the process steps summarized here 



 

CMU/SEI-2010-TN-025 | 10 

are available in ISO/IEC 15939: 2007 [ISO 2007] and Practical Software Measurement [McGarry 

2002]. 

2.1.1 Establish and Sustain Measurement Commitment 

No measurement process can succeed without management and stakeholder commitment, both up 

front as the process is being scoped and defined and on an ongoing basis as the process is imple-

mented. That commitment requires a sponsor who ensures that decision makers and key stake-

holders are fully engaged. The sponsor works with these individuals to allocate the resources ne-

cessary to execute all process activities on a sustaining basis, to use the measurement reports that 

result from the process, and to identify improvements that will make results most useful for in-

forming key decisions.   

Additionally, a grassroots commitment to establishing and sustaining measurement must exist in 

the sense that each individual in the organization feels free to provide accurate and timely data. To 

achieve such a grassroots commitment, organizations must recognize the psychology of mea-

surement and address any institutional fear of measurement. Individuals and projects must view 

measurement as a positive and purposeful activity deserving of the utmost discipline and quality. 

Additional policies that may be warranted include sufficient data security and usage controls, 

sometimes including a measurement code of ethics to be signed by all managers, data custodians, 

and other users of the data repository. 

2.1.2 Plan for Measurement 

The plan for measurement process activity encompasses (1) the identification of information 

needs for decision makers and (2) the selection of appropriate measures to address those needs. 

Planning for measurement considers a project’s goals, constraints, risks, and issues or problems. 

Information needs can be derived from societal, political, environmental, economic, business, or-

ganizational, regulatory, technological, product, and programmatic objectives. 

For the purpose of this research project, the scope of information needs and the decisions they 

inform are intended to cover a wide range of contexts for the measurement and analysis of soft-

ware security, including 

 a single-software application, a set of applications, a software-reliant system, and a system of 

systems 

 software and systems that are being developed or acquired 

 software and systems in operation including the modification of existing systems and the 

addition of new software and systems 

 single organizations and multiple organizations collaborating to achieve a joint mission 

Given the range of objectives and these broad, multidimensional contexts, Section 6 proposes a 

process and framework for identifying the information needs of decision makers and provides a 

few examples of how measures could be selected and derived to address information needs. 

Planning for measurement also addresses the tasks, schedule, and resources (staff, technologies, 

facilities, etc.) required to accomplish all measurement process activities. This includes defining 

the procedures that will be used for data collection, storage, analysis, and reporting. 



 

CMU/SEI-2010-TN-025 | 11 

2.1.3 Perform Measurement 

The perform measurement process activity encompasses the timely collection, analysis, storage, 

and reporting of measurement data to provide decision makers with the information products that 

satisfy their information needs. This activity is the heart of MA process implementation. Analysis 

and reporting includes formulating recommendations for decision makers and providing alterna-

tive courses of action based on measurement results.  

2.1.4 Evaluate the Measurement Process  

The evaluate the measurement process assesses both the measures that are used, as well as the 

capability of the measurement process itself. Evaluating a measurement process ultimately leads 

to the identification of improvements to the measurement effort. The measurement process may 

be evaluated in four ways as outlined in Measurement and Analysis Infrastructure Diagnostic 

(MAID) Evaluation Criteria, Version 1.0 [SEMA 2009]: 

1. measurement and analysis planning—an evaluation of the planning for measurement at vari-

ous levels of the organization down to and including the project level 

2. data collection and storage—an evaluation of the processes, responsibilities, and tools used 

to collect and store data 

3. data analysis—an analysis of how an organization conducts data analysis including analyti-

cal methods and tools 

4. measurement and analysis reporting—an evaluation of the processes, integrity, and effec-

tiveness of reporting the results of measurement and analysis 

When analyzing data using quantitative methods (discussed in Section 6.2), the quality of the data 

is particularly important. Initially, sample data will be used due to the lack of sufficient security-

related data, so the quality of the sample data is essential to any subsequent hypothesis testing and 

predictive analytics. Too much noise in sample data tends to either mask significant relationships 

or project false relationships. 

Improving the measurement process involves a wide variety of solutions based on identified defi-

ciencies.  Improvements can run the gamut from building proper senior management commitment 

and support for measurement to increasing the quality of collected measurement data.  Common 

process aids used by teams in identifying measurement process improvements include the Ishika-

wa diagram
8
 (otherwise known as the fishbone diagram) and Failure Modes and Effects Analysis 

(FMEA) [Stamatis 2003]. Both of these techniques structure the discussion about what can go 

wrong and why.      

2.2 Using Information to Support Decision Making 

A decision maker is the individual or management team that oversees a software development or 

acquisition program. The decision maker is accountable for ensuring that the end product or sys-

tem meets its requirements within negotiated cost and schedule constraints and ensures that the 

product functions as intended in its operational environment, including issues with respect to se-

curity. For this research project, this means providing justified confidence that the software prod-

 
8
  http://en.wikipedia.org/wiki/Ishikawa_diagram 

http://en.wikipedia.org/wiki/Ishikawa_diagram


 

CMU/SEI-2010-TN-025 | 12 

uct is sufficiently secure to meet operational needs once it is deployed. Information needs com-

prise the data and knowledge necessary to provide decision makers with the facts and insights to 

make informed decisions. Decision makers responsible for systems in operation are often not the 

same people as those responsible for development and acquisition, which can further complicate 

the identification of information needs. 

Decision makers consume information from a wide variety of sources to inform their decisions. 

Unfortunately, in the internet age, information consumers can easily become overwhelmed. One 

of the key themes throughout this report is the determination of how to define and provide just the 

information that decision makers need when they need it and in the right form. The attention span 

of decision makers is a constrained resource, so we need approaches for directing their attention 

to the information that matters most. 

In general, decision makers obtain information from multiple sources, as shown in Figure 2. 

Decision Maker

Reports

Targeted Analysis

Measurement 

Process

Information 

needs
Measures

Information 

needs

Information 

needs

Reports

Analysis 

results

 

Figure 2: Measurement Must Focus on Effective Decision Making 

The measurement process illustrated in Figure 2 is as described in Section 2.1. It defines activities 

that gather and analyze measurement data based on defined information needs. If obtained proper-

ly, measurement data (measures and indicators) provides the needed information to support effec-

tive decisions. The use of the measurement process to inform decision makers will evolve as this 

research project addresses each measurement process activity (as described in Section 2.1). 

The box labeled ―Targeted Analysis‖ includes information and knowledge that results from the 

application of analysis methods, techniques, and tools. Targeted analysis is conducted to support 

decision making based on defined information needs. This can be done independently and within 

the context of the measurement process. 

Reports include textual and graphical information products that support defined information needs 

and are produced in the form and language that are meaningful for decision makers. 

It is worth noting that measurement is a well-defined discipline and is being applied successfully 

to software development [SEI 2010] and software security and assurance (refer to Appendix B). 

However, the focus of measurement has traditionally been in the context of a single organizational 

entity and a single project. The next section will describe why research on software security mea-



 

CMU/SEI-2010-TN-025 | 13 

surement and analysis needs to reflect today’s realities, which include multiple organizations col-

laborating in a distributed management environment. 



 

CMU/SEI-2010-TN-025 | 14 

3 Distributed Management Environments 

A logical starting point when looking at software security measurement is to consider it within the 

context of a project. In this report, a project is defined as a planned set of interrelated tasks that 

are executed over a fixed period of time and within certain constraints, such as cost or funding 

limitations. Unlike operations, which are repetitive and permanent (or semipermanent) functional 

tasks intended to produce products or provide services, projects are temporary in nature. A soft-

ware project is an endeavor that is intended to produce a software product, such as a software ap-

plication or software-reliant system, within a fixed period of time and within specified budget 

constraints. Typically, a single manager has final decision-making responsibility and authority for 

a project. As a result, the project manager is considered to be the key decision maker for the 

project. 

In recent years, the nature of software products has evolved with the emergence of computer net-

works. The focus has shifted from producing stand-alone software products to providing technical 

capabilities within a larger system-of-systems context. Here, a system of systems is defined as a 

set or arrangement of interdependent systems that are related or connected (i.e., networked) to 

provide a given capability [Levine 2003].
9
 The following characteristics are used to differentiate a 

system of systems from a very large, complex monolithic system [Maier 1996]: 

 managerial independence—The management of each system within a system of systems is 

independent from the management of the other systems. 

 operational independence—Each system within a system of systems provides useful functio-

nality apart from other systems. 

 evolutionary character—Each system within a system of systems grows and changes inde-

pendently of other systems over time. 

 emergent behavior—Certain behaviors of a system of systems arise from the interactions 

among the individual systems and are not embodied in any of the individual systems. 

 geographic distribution—Individual systems within a system of systems are dispersed over 

large geographic areas. 

Providing technical capabilities via a set of interdependent, networked systems (i.e., a system of 

systems) requires the coordinated efforts of multiple organizations. Rather than focusing on how a 

project team provides a stand-alone software product for a customer, we must shift our focus to 

how multiple project teams working collaboratively provide technical capabilities via a set of 

networked software products. An acquisition program is defined as a collection of individual 

projects that work collaboratively to provide technical capabilities via a set of networked software 

products (i.e., a system of systems).  

Figure 3 depicts an acquisition program. The mission of an acquisition program is to acquire, de-

velop, and deploy networked software products that function as intended and that are reliable, 

 
9
  Software within a system of systems comes from a variety of sources, including open source, commercial-off-

the-shelf (COTS), custom developed, and so on. An inadequate understanding of the pedigree of software 
components and problems that arise from integrating software components from multiple sources leads to risk 
and uncertainty in systems of systems. 

http://www.businessdictionary.com/definition/task.html
http://www.businessdictionary.com/definition/executed.html
http://www.investorwords.com/3669/period.html
http://www.investorwords.com/3669/period.html


 

CMU/SEI-2010-TN-025 | 15 

safe, and secure. Figure 3 shows how project teams from multiple organizations work collabora-

tively to achieve that mission. In some cases, relationships among organizations are formally de-

fined. For example, an acquirer can execute a formal contract with a supplier that governs the re-

lationship between the two organizations. Typically, the acquirer provides a set of requirements, 

and the supplier develops a software product that meets those requirements. Another example of a 

formal agreement between organizations is when an acquirer licenses commercial-off-the-shelf 

(COTS) software from a supplier. A license outlines any terms and conditions regarding the ac-

quirer’s use of the software product. However, the supplier is free to update or make changes to 

the software as it sees fit, without considering the impact on its customers (i.e., its licensees). 

 

Reuse
Program 

Office

Outsource

Develop 

In-House

Acquire

Prime 

Contractor

Supplier
Acquire 

COTS

Supplier

Reuse

Outsource
Develop 

In-House

Acquire

US 

Developers

Foreign 

Developers

Develop 

in US

Develop 

Offshore

Use Legacy 

Software

Contractor

?

?

?

Supplier

Develop 

In-House

US 

Developers

Foreign 

Developers

Develop 

in US

Develop 

Offshore

? ?

?

?

 

Figure 3: Acquisition Program 

While many relationships within an acquisition program are governed by formal agreements, such 

as contracts or licenses, some relationships are informal. For example, software products being 

acquired and developed by a program are often required to interoperate with existing operational 

systems and with applications that are being acquired by other programs. In practice, relationships 

with other, separately funded programs tend to be informal and ad hoc. 

An acquisition program is an example of a distributed management environment, which is defined 

as multiple, independently managed organizational entities working collaboratively to achieve a 

common mission or purpose. In general, no single administrative structure or set of policies go-

verns all organizations in a distributed management environment such as an acquisition program. 

In addition, no single manager has authority over all organizations within the environment. Mul-



 

CMU/SEI-2010-TN-025 | 16 

tiple points of management control (i.e., multiple decision makers) exist, which creates a degree 

of programmatic complexity that can be difficult to manage effectively.  

The measurement approach outlined in this report can be used in all types of distributed manage-

ment environments, including acquisition programs, supply chains, and systems of systems. How-

ever, our primary focus is on acquisition programs because of our interest in measuring software 

security early in the acquisition and development life cycles. The next section explores an ap-

proach for sorting through the programmatic and product complexity and measuring performance 

in distributed management environments.  

 

 



 

CMU/SEI-2010-TN-025 | 17 

4 Analyzing Performance in a Distributed Management 

Environment 

Measurement and analysis should be tailored to the context in which it will be applied. Our re-

search is focused on using measurement and analysis to assess performance in distributed man-

agement environments, such as an acquisition program.
10

 The goal is to define an approach that is 

well suited to these environments by 

 understanding the key characteristics of distributed management environments 

 exploring alternative measurement and analysis approaches 

 selecting an approach that is appropriate for distributed management environments 

Establishing the key characteristics of a distributed management environment requires examining 

its core elements. A distributed management environment is an example of an interactively com-

plex socio-technical system that spans multiple organizational entities. Here, a socio-technical 

system is defined as interrelated technical and social elements that are engaged in goal-oriented 

behavior. Elements of a socio-technical system include the people who are organized in teams or 

departments to do their work tasks and the technical systems on which people rely when perform-

ing work tasks.  

Two distinct types of analysis can be used when evaluating interactively complex socio-technical 

systems [Leveson 2004]: (1) system decomposition and event analysis and (2) systemic analysis.  

4.1 System Decomposition and Event Analysis 

Most engineering analyses are based on the principle of system decomposition and event analysis 

[Leveson 2004]. The first step when conducting this type of analysis is to decompose the socio-

technical system into its components. Individual components are then prioritized, and a subset of 

components is designated as being critical. Next, analysts evaluate how a series of predefined 

events might affect each critical component. 

System decomposition and event analysis enables stakeholders to implement effective controls in 

order to mitigate potential failures triggered by a range of events. This approach is very useful 

when mitigating risks to critical components and, as a result, minimizing the likelihood that those 

components will fail. Overall, system decomposition and event analysis has proven to be an es-

sential approach within the discipline of systems engineering. However, when using this approach 

to evaluate interactively complex socio-technical systems, analysts need to understand its limita-

tions, which include the following [Leveson 2004]: 

 The selection of which events to include in the analysis is subjective. 

 
10

  An acquisition program is classified as a distributed management environment because it comprises multiple, 
independently managed organizational entities (i.e., projects) working collaboratively to achieve a common mis-
sion. However, a project is not an instance of a distributed management environment because, by definition, it 
is a single organizational entity and a distributed management environment requires the existence of multiple, 
independently managed organizational entities. 



 

CMU/SEI-2010-TN-025 | 18 

 An event’s causal relationships are simple, direct, and linear. Nonlinear relationships, such 

as feedback, are not analyzed. In addition, only the proximate causes of failure are consi-

dered, and interactions among system components are not analyzed. 

 Events that produce extreme or catastrophic consequences are difficult to predict because 

they can be triggered by the contemporaneous occurrences of multiple events, cascading 

consequences, and emergent system behaviors. 

System decomposition and event analysis is focused on preventing the failure of critical compo-

nents within a socio-technical system rather than on assuring the behavior of the system as a 

whole. As a result, it is not sufficient for evaluating the assurance of interactively complex socio-

technical systems, like distributed management environments. 

A relatively simple socio-technical system, as defined in this document, is one that has a small 

number of unknowns when considering interactions among system components and with the sys-

tem’s environment. System decomposition and event analysis is effective when applied to socio-

technical systems that have few unknowns because uncertainty is relatively low and the range of 

events that can lead to failure is known. However, system decomposition and event analysis does 

not effectively handle the high degree of uncertainty inherent in interactively complex socio-

technical systems. In addition, the degree of uncertainty in a socio-technical system tends to in-

crease when it spans multiple organizations. Figure 4 shows that decision makers can have trouble 

making sense of numerous, disparate data when assessing assurance for interactively complex 

socio-technical systems. 

Decision Maker

Reports

Targeted Analysis

Measurement 

Process

Information 

needs
Measures

Information 

needs

Information 

needs

Reports

Analysis 

results

Barrier

 

Figure 4: Decision Making in Interactively Complex Socio-Technical Systems 

As illustrated in the figure, each source of information provides an insight into a piece of the 

overall system; however, the high degree of interactive complexity prevents the decision maker 

from ―connecting the dots‖ among the data. As a result, the decision maker is unable to confident-

ly assess the behavior of the system as a whole in terms of its ability to achieve mission success. 

A different approach is needed.  



 

CMU/SEI-2010-TN-025 | 19 

4.2 Systemic Analysis 

Systemic analysis of socio-technical systems is based on system theory. The underlying principle 

of system theory is that a system is analyzed as a whole rather than decomposing it into individual 

components and then analyzing each component separately [Leveson 2004]. In fact, some proper-

ties of a system are best analyzed by considering the entire system, including 

 influences of environmental factors 

 feedback and nonlinearity among causal factors 

 systemic causes of failure (as opposed to proximate causes) 

 emergent properties 

Systemic analysis thus assumes a holistic view of risk to an interactively complex socio-technical 

system. The first step in this type of analysis is to establish the objectives that must be achieved. 

The objectives define the desired outcome, or ―picture of success,‖ for a socio-technical system. 

Next, systemic factors that have a strong influence on the outcome (i.e., whether or not the objec-

tives will be achieved) are identified. These factors, called drivers in this report, are important 

because they define a small set of factors that can be used to assess a socio-technical system’s 

performance and gauge whether it is on track to achieve its key objectives. The drivers are then 

analyzed, which enables decision makers to gauge the performance (i.e., understand the behavior) 

of the system.  

The SEI’s experience shows that systemic analysis is useful for understanding the behavior of 

interactively complex socio-technical systems because it effectively handles their inherently high 

degree of uncertainty [Alberts 2009]. Applying systemic analysis to highly complex systems pro-

vides the decision maker with a means of confidently assessing the behavior of the system as a 

whole, which is necessary when assessing assurance. This concept is depicted in Figure 5 below, 

where systemic analysis enables decision makers to confidently assess the behavior of the system 

by integrating information obtained from multiple sources.  

Systemic 

Analysis

Reports

Targeted Analysis
Decision Maker

Tactical 

Measurement

Systemic 

measures

Information 

needs

Tactical 

measures

Decision-making 

context
Information 

needs

Information 

needs

Reports

Analysis 

results

 

Figure 5: Decision Making Using Systemic Analysis 

It is important to note that systemic analysis does not replace other types of measurement and 

analysis. Instead, it gathers data from many sources and then provides a consolidated view of per-



 

CMU/SEI-2010-TN-025 | 20 

formance for decision makers. As a result, Figure 5 comprises a two-tiered measurement and 

analysis approach that produces two distinct types of measures: systemic and tactical. The dia-

gram in Figure 5 builds on similar figures presented earlier in this report (Figure 2 and Figure 4) 

by incorporating systemic analysis into the measurement and analysis approach. Both types of 

measures will be briefly discussed, beginning with systemic measures.  

In the scenario depicted in Figure 5, the decision maker has a thorough understanding of the prob-

lem space within which decisions must be made, which is referred to as the decision-making con-

text. However, the decision maker is unable to directly articulate his or her information needs. 

Systemic analysis produces a set of drivers that can be used to assess a socio-technical system’s 

performance and gauge whether it is on track to achieve its key objectives. The decision maker 

can then identify information needs based on the drivers that have been selected. Data from tar-

geted analysis, reports, and tactical measurement that meet these information needs can be col-

lected and analyzed. Evaluated drivers produce a set of systemic measures that provide the deci-

sion maker with insight into the overall performance of a socio-technical system. (An approach 

for evaluating drivers to produce systemic measures is presented in Section 5.2.)  

The second key aspect of measurement and analysis depicted in Figure 5 is called tactical mea-

surement. It defines an approach for producing a set of tactical measures that provide the decision 

maker with insight into a specific task that must be performed or into some characteristic of a 

work product. While tactical measurement provides useful information to decision makers about 

specific aspects of a socio-technical system, it does not provide direct insight into the system’s 

overall potential for success. Systemic analysis integrates data from targeted analysis, reports, and 

tactical measurement and provides decision makers with relevant insights into the performance of 

the socio-technical system. (An approach for aligning tactical measures with drivers is presented 

in Section 6.3.) Because the framework provides relevant insights into the behavior of interactive-

ly complex socio-technical systems, the SEI is using it as a foundation for measuring performance 

in distributed management environments.  

 

 



 

CMU/SEI-2010-TN-025 | 21 

5 Mission-Objective-Driver (MOD) Analysis11  

The SEI is developing the Mission-Objective-Driver (MOD) Analysis method to enable systemic 

analysis of interactively complex socio-technical systems. During preliminary development and 

testing activities, SEI researchers have determined that MOD Analysis enables an efficient and 

effective means of measuring performance in distributed management environments, such as ac-

quisition programs [Alberts 2009, Dorofee 2008]. The following two activities form the founda-

tion of MOD Analysis: (1) driver identification and (2) driver analysis. This section describes 

both activities in detail and then concludes with a discussion of the driver profile, which is the 

main output of MOD Analysis. 

5.1 Driver Identification 

The main goal of driver identification is to identify a set of factors, called drivers, that can be used 

to measure performance in relation to a program’s mission and objectives. Once the set of drivers 

is identified, analysts can then evaluate each driver in the set to gain insight into the likelihood of 

achieving the mission and objectives. To measure performance effectively, analysts must ensure 

that the set of drivers conveys sufficient information about the mission and objectives being eva-

luated. As a result, the first step in identifying a set of drivers is to establish the mission. 

5.1.1 Mission 

MOD Analysis defines the term mission as the fundamental purpose of an individual, group, or 

operation. In the context of an acquisition program, the mission can be expressed in terms of the 

software product that is being acquired, developed, and deployed.  The following is an example of 

a mission statement as required by MOD Analysis: The XYZ Program is providing a new, web-

based payroll system for our organization.  

The mission statement is important because it defines the target, or focus, of the measurement and 

analysis effort. After the basic target has been established, the next step is to identify which spe-

cific aspects of the mission need to be analyzed in detail.  

5.1.2 Objectives 

In MOD Analysis, an objective is defined as a tangible outcome or result that must be achieved 

when pursuing a mission. Each mission typically comprises multiple objectives. The goal of the 

second step of driver identification is to determine which of those objectives will be assessed dur-

ing MOD Analysis. Selecting objectives refines the scope of the assessment to address specific 

aspects of the mission that are important to decision makers. In general, objectives identified dur-

ing MOD Analysis should meet the following criteria:  

 specific—The objective is concrete, detailed, focused, and well defined. It emphasizes action 

and states a specific outcome to be accomplished. 

 measurable—The objective can be measured, and the measurement source is identified. 

 
11

  Much of the material in this section is adapted from A Framework for Categorizing Key Drivers of Risk [Alberts 
2009]. 



 

CMU/SEI-2010-TN-025 | 22 

 achievable—The expectation of what will be accomplished is attainable given the time pe-

riod, resources available, and so on. 

 relevant—The outcome or result embodied in the objective supports the broader mission 

being pursued. 

 time-bound—The timeframe in which the objective will be achieved is specified. 

During driver identification, analysts must select one or more objectives that will be analyzed. 

The number of objectives depends on the breadth and nature of the issues being investigated. The 

following is an example of a generic objective for determining whether an acquisition program is 

adequately addressing software security: When the system is deployed, security risks to the dep-

loyed system will be within an acceptable tolerance. This example is fairly abstract; additional 

details must be added to the objective to meet the criteria listed above. For example, the objective 

could be augmented to address 

 which system is being deployed 

 when that system is expected to be deployed 

 how risk will be measured 

 how ―acceptable tolerance‖ is defined for the program 

The SEI’s field experience shows that many decision makers (e.g., acquisition program managers) 

have difficulty constructing objectives that meet the above criteria for objectives. While decision 

makers have a tacit understanding of their objectives, they often cannot precisely articulate or ex-

press the objectives in a way that addresses the criteria. If the program’s objectives are not clearly 

articulated, decision makers can have trouble assessing whether the program is on track for suc-

cess. To address this issue, qualitative implementations of MOD Analysis allow for imprecise 

expressions of objectives. Specific information about objectives that is tacitly understood by pro-

gram managers and staff becomes more explicit during execution of the MOD Analysis method. 

The remainder of Section 5 describes the qualitative implementation of MOD Analysis. A quan-

titative implementation of MOD Analysis is discussed in Section 6.2.
12

 

5.1.3 Drivers 

MOD Analysis defines a driver as a factor that has a strong influence on the eventual outcome or 

result (i.e., whether or not objectives will be achieved). Table 2 highlights three key attributes of a 

driver: name, success state, and failure state. The example driver in the table is named Security 

Process, and it examines how the program’s processes are affecting achievement of the software 

security objective. Table 2 also indicates that each driver has two possible states: a success state 

and a failure state. The success state means that the program’s processes incorporate security con-

siderations adequately, which helps enable the achievement of the objectives. In contrast, the fail-

ure state signifies that the program’s processes do not adequately incorporate security considera-

tions and, as a result, the objectives will not be achieved. 

 
12

  At this point in time, we do not have a good understanding of the relative values of using qualitative and quan-
titative implementations of MOD Analysis. A goal of our research is to provide guidance about the benefits of 
using each implementation.  



 

CMU/SEI-2010-TN-025 | 23 

Table 2: Driver States 

Attribute Description Example 

Name A concise label that describes the 

basic nature of the driver. 

Security process 

Success state A driver exerts a positive influence on 

the outcome. 

The process being used to develop and deploy the 

system sufficiently incorporates security. 

Failure state A driver exerts a negative influence on 

the outcome. 

The process being used to develop and deploy the 

system does not sufficiently incorporate security. 

Analysis of a driver requires determining how it is currently acting (i.e., its current state) by ex-

amining the effects of conditions and potential events on that driver. The goal is to determine if 

the driver is 

 almost certainly in its success state 

 most likely in its success state 

 equally likely to be in its success or failure states 

 most likely in its failure state 

 almost certainly in its failure state 

This list defines the scale for driver analysis results. Analyzing each driver that contributes to a 

specific set of objectives establishes a benchmark of performance in relation to mission and objec-

tives.  

5.1.4 Deriving a Set of Drivers 

The starting point for identifying a set of drivers is to articulate the mission and objectives that are 

being assessed. Analysts can then derive a set of drivers from them. The relationships among mis-

sion, objectives, and drivers are depicted in Figure 6. 

Deriving a unique set of drivers based on the program’s mission and objectives requires gathering 

information from people with experience and expertise relevant to the specified mission and ob-

jectives. For example, identifying a set of drivers for software development objectives requires 

input from acquisition programs managers and software-reliant systems developers. Similarly, 

analysts seeking to identify a set of drivers for software security would consult with security ex-

perts.  

 



 

CMU/SEI-2010-TN-025 | 24 

Mission

Key Objective 2Key Objective 1 … Key Objective M

Driver 2Driver 1 Driver 3 … Driver N  

Figure 6: Relationships Among Objectives and Drivers 

The experts from whom information is elicited should be familiar with the objectives that have 

been defined. Analysts can use the objectives to focus interviews or discussions with experts. 

During interviews or discussions, experts answer the following questions: 

 What circumstances, conditions, and events will drive your program toward a successful out-

come? 

 What circumstances, conditions, and events will drive your program toward a failed outcome? 

After they obtain information from the experts, analysts organize the information into approx-

imately 10–20 groups that share the driver as the central idea or theme of each group. SEI staff 

has employed this approach for identifying drivers in a variety of areas, including software acqui-

sition and development programs, cyber security processes, and business portfolio management 

[Alberts 2009]. The most recent focus has been on establishing drivers for software security. The 

next section presents a set of software security drivers that can be used as a starting point for tai-

loring measurement and analysis activities. 

5.1.5 A Standard Set of Drivers for Software Security 

The SEI has applied driver identification to software security. As a result, a standard set of 17 

drivers for software security has been identified and documented. Table 3 lists the name of each 

software security driver along with a question that is used when analyzing that driver’s state. 

These standard drivers were derived from the software security objective highlighted in Section 

5.1.2 and have not been validated in pilot assessments. The next step in the development of the 

software security drivers is to validate them through field testing. Once a set of drivers is vali-

dated, it serves as an archetype that analysts can quickly tailor and apply to specific programs. 

 

 

 



 

CMU/SEI-2010-TN-025 | 25 

Table 3: Prototype Set of Driver Questions for Software Security 

Driver Name Driver Question 

1. Program Security  

Objectives 

Are the program’s security objectives realistic and achievable? 

2. Security Plan Does the plan for developing and deploying the system sufficiently address 

security? 

3. Contracts Do contract mechanisms with partners, collaborators, subcontractors, and  

suppliers sufficiently address security? 

4. Security Process Does the process being used to develop and deploy the system sufficiently 

incorporate security? 

5. Security Task Execution Are security-related tasks and activities performed effectively and efficiently? 

6. Security Coordination Are security activities within the program coordinated appropriately? 

7. External Interfaces Do work products from partners, collaborators, subcontractors, or suppliers 

meet security requirements? 

8. Organizational and  

External Conditions 

Are organizational and external conditions facilitating completion of security 

tasks and activities? 

9. Event Management Is the program able to identify and manage potential events and changing  

circumstances that affect its ability to meet its software security objectives? 

10. Security Requirements Do requirements sufficiently address security? 

11. Security Architecture and 

Design 

Do the architecture and design sufficiently address security? 

12. Code Security Is the code sufficiently secure? 

13. Operational System  

Security 

Is the integrated system sufficiently secure to support operations? 

14. Adoption Barriers Have barriers to customer/user adoption of the system’s security features been 

managed appropriately? 

15. Operational Security  

Compliance 

Will the system comply with applicable security policies, laws, and regulations? 

16. Operational Security  

Preparedness 

Are people prepared to maintain the system’s security over time? 

17. Security Risk Tolerance Is the security risk of the deployed system within an acceptable tolerance? 

The drivers in Table 3 can be divided into two fundamental types: programmatic drivers and 

product drivers. Drivers 1–9 are referred to as programmatic drivers because they provide insight 

into how well the acquisition program is being managed. Drivers 10-17 are referred to as product 

drivers because they provide insight into the system that is being acquired, developed, and dep-

loyed.   

5.1.6 Tailoring an Existing Set of Drivers 

The standard set of drivers (Table 3) can be used to assess software security in general. However, 

the standard set must be to tailored to the requirements of a specific acquisition program to ensure 

that the 

 set of drivers accurately reflects the key objectives of the specific program being assessed 

 set of drivers is adjusted appropriately based on the program’s context and characteristics 

 phrasing of each driver is consistent with the program’s terminology 

The first step when tailoring an existing set of drivers is to clearly articulate the program’s objec-

tives. In addition, background information about the program is required to understand what the 

program is trying to accomplish and to gain an appreciation for its unique context and characteris-



 

CMU/SEI-2010-TN-025 | 26 

tics. Meetings with program management and staff should be scheduled to collect all relevant 

background information. 

After analysts gain a basic understanding of the program’s context, they can then begin to tailor 

the drivers. Based on the objectives being assessed and the data that has been gathered, analysts 

must complete the following steps: 

1. Determine which drivers do not apply to the program. Eliminate extraneous drivers from the 

set. 

2. Establish whether any drivers are missing from the list. Add those drivers to the set.  

3. Decide if multiple drivers from the set should be combined into a single, high-level driver. 

Replace those drivers with a single driver that combines them. 

4. Decide if any drivers should be decomposed into multiple, more detailed drivers. Decom-

pose each of those drivers into multiple drivers. 

5. Adjust the wording of each driver to be consistent with the terminology and language of the 

program that is being assessed. 

At this point, the tailored set of drivers can be used to assess the program’s current state by com-

pleting the second activity of MOD Analysis, driver analysis. 

5.2 Driver Analysis 

The goal of driver analysis is to determine how each driver is influencing the objectives. More 

specifically, the probability of success state or failure state for each driver must be established. 

Notice that each driver question in Table 3 is expressed as a yes/no question that is phrased from 

the success perspective. Figure 7 depicts a driver question for the Security Process driver. This 

example will be used throughout this section when discussing driver analysis. 

Driver 4: Security Process

Does the process being used to develop and deploy the system 

sufficiently incorporate security?

Considerations:

 Security-related tasks and activities in the program workflow

 Conformance to security process models

 Measurements and controls for security-related tasks and activities

 Process efficiency and effectiveness

 Software security development life cycle

 Security-related training

 Compliance with security policies, laws, and regulations

q Yes

q Likely Yes

q Equally Likely

q Likely No

q No

q Don’t Know

Driver Question Response

 

Figure 7: Driver Question and Range of Responses 

Because the question in the figure is phrased from the success perspective, an answer of yes indi-

cates the driver is in its success state and an answer of no indicates it is in its failure state. A range 

of answers is used to determine probabilities (likely yes, equally likely yes or no, likely no) when 

the answer is not a definitive yes or no. In addition, key items to consider when answering each 

question, called considerations, are provided for each driver question. The prototype set of stan-



 

CMU/SEI-2010-TN-025 | 27 

dard driver questions for software security along with the considerations for each question are 

listed in Appendix A.  

A set of driver value criteria, such as those shown in Figure 8, are normally used to support driver 

analysis. Driver value criteria serve two main purposes: 

 They provide a definition of applicable responses to a driver question. 

 They translate each response into the probability that the driver is in its success state, as well as 

the probability that it is in its failure state. 

The answer is almost certainly “yes.” Almost no 

uncertainty exists. There is little or no probability that the 

answer could be “no.”

(~ > 95% probability of yes)

The answer is most likely “yes.” There is some chance 

that the answer could be “no.” 

(~ 75% probability of yes)

The answer is just as likely to be “yes” or “no.” 

(~ 50% probability of yes)

The answer is most likely “no.” There is some chance 

that the answer could be “yes.” 

(~ 25% probability of yes)

The answer is almost certainly “no.” Almost no 

uncertainty exists. There is little or no probability that the 

answer could be “yes.” 

(~ < 5% probability of yes)

Yes

Likely yes

Equally likely

Likely no

No

Maximum

High

Medium

Low

Minimum

Minimum

Low

Medium

High

Maximum

Response Definition

Values

Probability of 

Success State

Probability of 

Failure State

 

Figure 8: Driver Value Criteria 

The criteria for analyzing a driver must be tailored for each application of driver analysis. For 

example, the criteria in Figure 8 are based on a five-point scale, which allows decision makers to 

incorporate different levels of probability in their answers. A different number of answers (i.e., 

more or less than five) can be incorporated into the analysis when appropriate. In addition, some 

people prefer to include a response of don’t know to highlight those instances where more infor-

mation or investigation is needed before a driver can be analyzed appropriately.  

When they analyze a driver, analysts need to consider how conditions and potential events
13

 affect 

that driver. In general, the following items should be considered for each driver that is analyzed:  

 positive conditions that support a response of yes 

 negative conditions that support a response of no 
 
13

  A condition is defined as the current state of being or existence. Conditions define an acquisition program’s 
current circumstances. A potential event is defined as an occurrence or happening that alters an acquisition 
program’s current conditions.  



 

CMU/SEI-2010-TN-025 | 28 

 potential events with positive consequences that support a response of yes 

 potential events with negative consequences that support a response of no 

 unknown factors that contribute to uncertainty regarding the response 

 assumptions that might bias the response 

Figure 9 shows an example of an analyzed driver. The answer to the driver question is likely no, 

which means that the driver is most likely in its failure state. As a result, the program’s processes 

for security are most likely insufficient for achieving the objectives. The rationale for the response 

to each driver question should also be documented because it captures the reasons why analysts 

selected the response. Recording this information is important for historical purposes and for de-

veloping lessons learned.   

+ Previous acquisitions have a 90% history of delivering on-time.

-The process for integration testing is likely inadequate. Historically, integration testing 

has used informal agreements between vendors who had established working 
relationships. With this system, the vendors have not worked together previously, which 
makes informal  agreements tenuous. 

-The integration team is inexperienced. Many staff members are new to the program 

(45%). 

-Training for new  staff members is insufficient. Software security is not adequately 

addressed. 

-The focus on security will require a significant change in vendors’ standard processes. 

There is little evidence that people were properly trained in the new processes.

-QA did not have a chance to review the new processes before they were put into practice.

Rationale

Driver 4: Security Process

Does the process being used to develop and deploy the system 

sufficiently incorporate security?

Considerations:

 Security-related tasks and activities in the program workflow

 Conformance to security process models

 Measurements and controls for security-related tasks and activities

 Process efficiency and effectiveness

 Software security development life cycle

 Security-related training

 Compliance with security policies, laws, and regulations

q Yes

q Likely Yes

q Equally Likely

q Likely No

q No

q Don’t Know

Driver Question Response

X

 

Figure 9: Analyzed Driver 

5.3 Driver Profile 

Finally, a driver profile provides a summary of all drivers relevant to the mission and objectives 

being assessed. A driver profile can be viewed as a dashboard that provides decision makers with 

a graphical summary of current conditions and expected performance in relation to the mission 

and objectives being pursued by a program.  Figure 11 provides an example of a driver profile for 



 

CMU/SEI-2010-TN-025 | 29 

software security. In the figure, a bar graph is used to show 17 drivers that correspond to the stan-

dard set for software security. 

The graph depicts the probability that each driver is in its success state. In addition, programmatic 

drivers are separated from the product drivers. The profiles in Figure 10 and Figure 11 indicate 

that the following four drivers are likely in their failure states: Security Process, Code Security, 

Operational System Security, and Security Risk Tolerance. These drivers should concern the pro-

gram’s decision makers. 

 

Figure 10: Driver Profile: Programmatic Drivers 

Maximum

High

Medium

Low

Minimal

Programmatic Drivers

1
. 
P

ro
g

ra
m

 S
e

c
u

ri
ty

 O
b

je
c

ti
v

e
s

4
. 
S

e
c

u
ri

ty
 P

ro
c

e
s

s

6
. 
S

e
c

u
ri

ty
 C

o
o

rd
in

a
ti

o
n

2
. 
S

e
c

u
ri

ty
 P

la
n

8
. 
O

rg
a

n
iz

a
ti

o
n

a
l 
a

n
d

 E
x

te
rn

a
l 
C

o
n

d
it

io
n

s

9
. 
E

v
e

n
t 

M
a

n
a

g
e

m
e

n
t

5
. 
S

e
c

u
ri

ty
 T

a
s

k
 E

x
e

c
u

ti
o

n

7
. 
E

x
te

rn
a

l 
In

te
rf

a
c

e
s

P
ro

b
a

b
il
it

y
 o

f 
S

u
c

c
e

s
s

 S
ta

te

3
. 
C

o
n

tr
a

c
ts

Probability of Being in the Success State



 

CMU/SEI-2010-TN-025 | 30 

 

Figure 11: Driver Profile: Product Drivers 

MOD Analysis enables systemic analysis of interactively complex socio-technical systems across 

the life cycle. As illustrated throughout this section, MOD Analysis defines an approach for as-

sessing an acquisition program’s ability to achieve its software security mission and objectives. It 

also forms the basis for a measurement and analysis framework for distributed management envi-

ronments, which is described in the next section. 

 

1
0

. 
S

e
c

u
ri

ty
 R

e
q

u
ir

e
m

e
n

ts

1
5

. 
S

e
c

u
ri

ty
 R

is
k

 T
o

le
ra

n
c

e

1
7

. 
O

p
e

ra
ti

o
n

a
l 
S

e
c
. 
M

a
in

te
n

a
n

c
e

1
2

. 
C

o
d

e
 S

e
c

u
ri

ty

1
1

. 
S

e
c

u
ri

ty
 A

rc
h

it
e

c
tu

re
  
&

 D
e

s
ig

n

Product Drivers

P
ro

b
a

b
il
it

y
 o

f 
S

u
c

c
e

s
s

 S
ta

te

1
3

. 
O

p
e

ra
ti

o
n

 S
y

s
te

m
  
S

e
c

u
ri

ty

1
4

. 
A

d
o

p
ti

o
n

 B
a

rr
ie

rs

1
6

. 
O

p
e

ra
ti

o
n

a
l 
S

e
c

u
ri

ty
 C

o
m

p
li
a

n
c

e

Probability of Being in the Success State

Maximum

High

Medium

Low

Minimal



 

CMU/SEI-2010-TN-025 | 31 

6 Integrated Measurement and Analysis Framework (IMAF)  

The Integrated Measurement and Analysis Framework (IMAF) uses MOD Analysis to integrate 

subjective and objective data from multiple sources (targeted analysis, reports, and tactical mea-

surement) and provide decision makers with a consolidated view of current conditions. To enable 

the construction of an integrated view of current conditions, the IMAF incorporates the two-tiered 

measurement and analysis approach presented earlier in Figure 5. (Refer to Section 4.2 for a de-

scription of the two-tiered measurement and analysis approach incorporating systemic analysis.)  

Figure 12 below illustrates the basic structure of the IMAF. The fundamental objective of the 

framework is to provide decision makers with information about the performance of interactively 

complex socio-technical systems. The framework incorporates MOD Analysis as the approach for 

performing systemic analysis. As illustrated in Figure 12, MOD Analysis integrates data from a 

variety of sources, including targeted analysis, reports, and tactical measurement, and provides a 

common view of systemic measures to the decision maker. Because the IMAF incorporates sys-

temic analysis, it can be used to measure performance in distributed management environments. 

MOD Analysis

Reports

Targeted Analysis
Decision Maker

Tactical 

Measurement

Systemic 

measures

Information 

needs

Tactical 

measures

Decision-making 

context
Information 

needs

Information 

needs

Reports

Analysis 

results

 

Figure 12: Integrated Measurement and Analysis Framework (IMAF) 

The IMAF defines a systemic measure as the probability that a driver is in its success state. (Refer 

to Section 5.1.3 for a discussion of drivers.) A set of systemic measures (i.e., a driver profile) pro-

vides decision makers with insights into the overall performance of a socio-technical system. Sys-

temic measures can be 

 qualitative—categorized subjectively using expert judgment (e.g., maximum, high, medium, 

low, minimal) 

 quantitative—derived using mathematical models (e.g., Bayesian Belief Networks
14

) 

 
14

  For information on Bayesian Belief Networks, refer to Bayesian Inference in Statistical Analysis by George Box 
and George Tiao, Wiley-Interscience, March 1992. 



 

CMU/SEI-2010-TN-025 | 32 

This section presents qualitative and quantitative implementations of the IMAF. First, Section 6.1 

examines how qualitative systemic measures can be incorporated into a driver-based assessment 

approach. Next, Section 6.2 describes a quantitative implementation of the IMAF using Bayesian 

Belief Networks. Finally, Section 6.3 explores the link between tactical and systemic measure-

ment and describes work being performed to align software security drivers (as described in Sec-

tion 5.1.5) with existing software security codes of practice, such as the Building Security In Ma-

turity Model [McGraw 2010]. 

6.1 Qualitative Implementation of the IMAF 

Qualitative implementations of the IMAF can be used as the basis for conducting security assess-

ments. In this report, an assessment is defined as a formal evaluation of a situation on behalf of 

stakeholders. The goal is to help decision makers understand (1) the current conditions affecting 

the situation and (2) what actions might be necessary to improve the status quo.  

The quality of assessment results often correlates to the skills and abilities of the analysts who are 

conducting the assessment. The approaches underlying many assessments lack sufficient structure 

and definition, which means that analysts are not required to follow a defined set of activities 

when conducting the assessment. Each team of analysts conducting an assessment is free to fol-

low whatever assessment protocol it deems appropriate for the given situation. The SEI is current-

ly working to codify its software security assessments to make them more structured and repeata-

ble. To achieve the goal of a structured and repeatable software security assessment, the SEI is 

beginning to develop an assessment approach that is based on a qualitative implementation of the 

IMAF and MOD Analysis. Figure 13 depicts the MOD Assessment, which incorporates qualita-

tive analysis of drivers to establish the degree of confidence in mission success. (See Section 5.2 

for a detailed discussion of driver analysis.) 

3 Generate data 

from 

documentation

2 Gather data 

from people

4 Analyze 

drivers

5 Establish 

driver profile

6 Determine 

next steps
1 Identify drivers

 

Figure 13: MOD Assessment 

The activities of a MOD Assessment are as follows: 

1. Identify drivers—Determine which drivers have a strong influence on the eventual outcome or 

result (based on mission and objectives). Refer to Section 5.1 for more information on identi-

fying drivers. 

2. Gather data from people—Elicit information about the program being assessed from people 

who play a role in executing it and then transform that information into usable data. 

3. Generate data from documentation—Collect documentation relevant to the program (e.g., tar-

geted analysis, reports, tactical measures) and generate usable data from that documentation. 

4. Analyze drivers—Establish the probability that each driver is in its success state. Refer to Sec-

tion 5.2 for more information on analyzing drivers. 



 

CMU/SEI-2010-TN-025 | 33 

5. Establish driver profile—Compile driver probabilities in a format that will support stakeholder 

decision making. Refer to Section 5.3 for more information on establishing a driver profile. 

6. Determine next steps—Identify actions for maintaining or improving the current state.  

Qualitative assessments have proven effective when evaluating operational security properties 

[Alberts 2002, GAO 1999]. The SEI’s experience indicates that a qualitative approach should 

benefit stakeholders concerned with software security. However, in some instances stakeholders 

may want more quantitative measurement of software security if the required data is available. 

The next section presents one quantitative approach for implementing the IMAF.  

6.2 Quantitative Implementation of the IMAF 

As mentioned in Section 1, the purpose of measurement and analysis for researchers is to enable 

the testing of hypotheses while examining individual cause-and-effect or leading-indicator rela-

tionships. Such relationships eventually form a holistic model that can be used to predict the ex-

tent to which security objectives can be achieved. 

Often, interviews with domain experts and/or a review of historical security data enable research-

ers to form assertions such as, ―Rigorous code reviews increase confidence in meeting security 

objectives.‖ A research hypothesis resulting from this assertion could be formed and documented 

more formally as follows:  

 H0:(Null Hypothesis): The rigor of code reviews has no relationship or correlation to the 

state of the Code Security Driver (refer to Appendix A, Driver 12). 

 H1:(Alternative Hypothesis): The rigor of code reviews has a significant positive relationship 

or correlation to the state of the Code Security Driver. 

Armed with this formally stated hypothesis, the researcher can then sample observational data of 

code review rigor and the resulting Code Security Driver status, including observations of varying 

levels of code review rigor. By using accepted statistical hypothesis testing available in statistical 

tools and establishing acceptable alpha and beta statistical errors,
15

 the researcher can then formu-

late a more compelling argument for the relationship or its absence. 

Moving beyond simple hypothesis testing, there is a need to incorporate greater understanding of 

predictive modeling within the current body of knowledge related to security entities: security 

strengths, security weaknesses, opportunity and threat events, drivers, and objectives. Predictive 

analytics offers a basis for quantifying the likelihood of occurrence and relationships among these 

security entities. We believe that models based on predictive analytics will enable a more compel-

ling and efficient basis for the research and use of these entities within the IMAF.  

A variety of modeling approaches exist to quantitatively implement the IMAF, specifically pro-

viding a predictive analytics engine within the MOD Analysis depicted in Figure 11. These ap-

proaches include, but are not limited to 

 traditional statistical correlation and regression analysis 

 systems dynamics modeling 

 
15

  Alpha error is the chance of incorrectly accepting the alternative hypothesis, while beta error is the chance of 
incorrectly accepting the null hypothesis. 



 

CMU/SEI-2010-TN-025 | 34 

 Monte Carlo simulation modeling 

 probabilistic modeling (e.g., Bayesian Belief Networks) 

After much discussion among the SEI researchers, the research project demands and constraints 

led to an initial modeling solution using Bayesian Belief Networks (BBNs). An example partial 

BBN for the software security objective is illustrated in Figure 14.   

Security 

Objective
To ensure that 

security risks are 

within tolerance 

Driver 10

Security 

Requirements

Driver 11

Security 

Design and 

Architecture

Driver 12

Code Security

Design review

Threat 

assessment

Change in 

security 

architecture

Document 

traceability

Vulnerability 

analysis 

results
Source code 

review results

Vulnerability 

analysis

Source code 

reviews

Secure 

coding 

practices

Change in 

security 

architecture

Objectives

Events

Drivers

Practices
Measures

 

Figure 14: Notional Bayesian Belief Network Showing Security Entity Relationships with a Security Ob-

jective 

Such a BBN would quantitatively confirm the likelihood of occurrence of specific security enti-

ties’ states as well as confirm the relationships of ―leading indicators‖ among the security entities. 

For example, in Figure 14, each of the entities, represented by circled nodes, have one or more 

states or conditions.  These could be binary, such as success and failure, or they could be one of 

several levels on a scale of 1–5 indicating the rigor performed.  Additionally, in Figure 14, each 

arrow represents a potential cause-and-effect relationship or leading indicator relationship. Three 

security drivers are selected as those that primarily explain the believed status of the security ob-

jective. Likewise, the status of driver 11 (Security Design and Architecture) may be determined in 

advance with knowledge of the following entities:   

 driver 10 (Security Requirements) 

 threat assessment 



 

CMU/SEI-2010-TN-025 | 35 

 design review 

 a change in the security architecture 

 document traceability measure 

Analysis may demonstrate that some relationships that reflect conventional wisdom are not signif-

icant, while other relationships may be newly determined. Consequently, even though Figure 14 

represents subjective expert opinion that the three identified drivers provide insight into the status 

of the security objective, the empirical analysis may show that only two of these drivers are statis-

tically or probabilistically linked to the security objective. In this case, the BBN is modified and 

the nonsignificant relationship is dropped from the model.  

Finally, an operational BBN model, which learns from additional experience and data, will prove 

useful for identifying security practices that provide the strongest contribution to meeting the se-

curity objective. Referring back to the example in Figure 14, the team acquires additional objec-

tive data or subjective security expert opinion on entities and their relationships. The model is 

constructed to learn from this and is easily updated in terms of state probabilities within each enti-

ty and the relationships between entities.  

In addition to supporting decision making in operational settings, the BBN also serves as a re-

search platform, expressing what is known and not known in entity relationships. It helps identify 

when additional new entities are needed and in which areas of the overall model. The key evalua-

tion of BBN model sufficiency rests on how narrow a probability distribution of the ―effect‖ enti-

ty node results from the observations of the ―causal‖ or ―leading-indicator‖ nodes: too wide a 

probability distribution decreases the practicality of using the BBN.   

The specific aspects of BBN modeling that address both the operational and research uses of the 

IMAF and MOD Analysis include the following (all of the illustrative examples refer to Figure 

13): 

 Ability to gain some analytical freedom from many of the statistical assumptions behind 

classical statistical methods (e.g., not being limited to statistical regression to explain rela-

tionships between security entities in the BBN model) 

 ability to create a holistic, quantitative model of the entire set of security drivers 

 ability not only to forecast the future but to explain past events that most likely led to today’s 

situation. For example, if we have observations of the status of drivers 10 and 12, we can be-

gin to make a forecast of the likely status of the security objective. We can also render our 

best judgment about the status of driver 11 and the code review, assuming we were not privy 

to these two entities for this particular organization. 

 ability to analyze and model both objective and subjective data, thus capitalizing on subject 

matter expert judgment. For example, we may only have actual observation data on three of 

the drivers and the design and code reviews, and the remainder of the entities would be based 

on subjective expert opinion until we could collect observed values of those entities. The ob-

served values would come from actually observing the entity state, such as whether or not a 

change in the security architecture has occurred or the degree of change in the security archi-

tecture. 



 

CMU/SEI-2010-TN-025 | 36 

 ability to operate and make predictions with incomplete data. For example, we may not be 

able to observe the status of several of the drivers such as driver 12 (Code Security) and 

driver 11 (Security Design and Architecture). Even in this situation, the BBN is able to use 

accepted conditional probabilistic computations to update all of the unobserved entities in 

the model. For example, although drivers 12 and 11 are unobserved, our observations of the 

other entities will still enable us to update our forecast of the security objective and also con-

clude the most likely state of drivers 12 and 11, simply based on the observed nodes all 

around them. In summary, we can forecast forward or diagnose backward using the BBN to 

update the calculations. 

 ability to make predictions for situations or scenarios not experienced before. For example, it 

might be the case that as we populate the model, we find that several of the scenarios of the 

combined driver states have not been experienced before. In this situation, the BBN model 

will use accepted probabilistic computations to forecast the status of the security objective. 

 ability to incorporate a learning mechanism similar to artificial intelligence and neural net-

work applications. For example, we may learn over time that the states within a given entity, 

such as driver 12 (Code Security), may actually be occurring with different probabilities than 

previously thought. The BBN model can learn and update these probabilities as new expe-

rience and data become available—similar to how email spam filters learn over time to more 

effectively reject unwanted email using a Bayesian mechanism. 

Using BBNs to implement the IMAF shows considerable promise for providing decision makers 

with quantitative measurement data. From a decision maker’s perspective, BBNs offer an ap-

proach to model real-time observations and update predictions with the latest knowledge, thereby 

providing decision makers with current and comprehensive information before making critical 

decisions.  The BBN model (as shown in Figure 14) is based upon the mapping of missions to 

objectives to drivers to practices to measures. The next section examines how to align drivers to 

software security codes of practice. 

6.3 Aligning Drivers with Software Security Codes of Practice 

Performing meaningful measurement and analysis based on carefully considered and defined software 
software security measures derives from a clear statement of the mission or purpose for an 
acquisition program. This statement is further expanded into a set of objectives that reflect 
the mission (refer to Section 5.1.2). In Section 5, this report describes the concept of drivers 
and the process for determining a set of drivers that best reflect the program objectives for 
software security. Given a set of well-defined drivers that reflect objectives, how do we then 
derive meaningful measures that increase our confidence that the software functions (or will 
function) securely in operation? And how do we connect measures to leading software secu-
rity codes of practice (frameworks and models) that are being used in organizations today to 
build more secure software?  

Figure 15 depicts this relationship. Eventually, as part of the IMAF, we intend to determine if we 

can define a measurement and analysis method for identifying a set of practices that are more ef-

fective in satisfying software security objectives.  



 

CMU/SEI-2010-TN-025 | 37 

MOD Analysis

Reports

Targeted Analysis
Decision Maker

Tactical 

Measurement

Systemic 

measures

Information 

needs

Tactical 

measures

Decision-making 

context
Information 

needs

Information 

needs

Reports

Analysis 

results

Mission

Objectives

Drivers

Practices

Measures

Integrated Measurement and Analysis Framework (IMAF)

 

Figure 15: Aligning Drivers with Software Security Codes of Practice 

The codes of practice that we have reviewed thus far include 

 Building Security In Maturity Model (BSIMM): http://bsimm2.com/ 

 Open Web Application Security Project (OWASP) Software Assurance Maturity Model 

(SAMM): http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model  

 Microsoft Secure Development Lifecycle: http://www.microsoft.com/security/sdl/   

 Department of Homeland Security Measurement work and Assurance for CMMI Process 

Reference Model: https://buildsecurityin.us-cert.gov/swa/  

 CERT Resilience Management Model, Resilient Technical Solution Engineering Process 

Area: http://www.cert.org/resilience/rmm.html 

Examples of the current state of the practice for expressing measures for software security include 

the following, taken from the OWASP SAMM, version 1.0 [OpenSAMM 2009]: 

 >90 percent applications and data assets evaluated for risk classification in past 12 months 

 >60 percent development staff trained within past 1 year 

 >80 percent staff certified within past 1 year 

 >50 percent of projects with updated attack surface analysis in past 12 months 

 >50 percent of projects with updated security requirements design-level analysis in past 12 

months 

 >50 percent of project teams performing code review on high-risk code in past 6 months 

While these implementation measures are informative, they describe only the presence, absence, 

and extent of some action. They say nothing about the contribution or effectiveness of such ac-

tions toward achieving a desired state of software security to meet a defined program objective. 

http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.microsoft.com/security/sdl/
https://buildsecurityin.us-cert.gov/swa/
http://bsimm2.com/
http://www.cert.org/resilience/rmm.html


 

CMU/SEI-2010-TN-025 | 38 

During this phase of our research, we defined both a top-down (Part 1) and a bottom-up (Part 2) 

process for aligning drivers with software security codes of practice (and vice versa) to produce 

meaningful measures. The Part 1 process uses an abbreviated Goal Question (Indicator) Metric 

(GQIM) Method developed at the SEI [Park 1996]. The GQIM draws upon earlier work done by 

Basilli and Rombach [Basili 1984, 1988, 1994; Rombach 1989] in defining a Goal Question Me-

tric (GQM) method. For both of these approaches and for goal-driven measurement in general, the 

primary question is not ―What metrics should I use?‖ but ―What do I want to know or learn?‖ 

[SEI 2010].  

These two processes are described in Table 4.  

Table 4: Align Drivers with Software Security Codes of Practice 

Approach Step Step Description 

Top Down (Part 1) 1.1 Select a driver of interest. 

1.2 Determine what information items and measures are needed to answer the driver ques-

tion (and inform driver considerations). 

1.3  Categorize measures as one of the following types: 

 Implementation: Is this activity/process being performed (presence, absence, 

extent)? 

 Effectiveness: How good is the work product or outcome of the activi-

ty/process? Does it achieve the intended result? 

 Process performance: Is the process performing as expected? Is the process 

defined, documented, planned, managed, monitored, controlled, and conti-

nuously improved? 

1.4 Determine if the measures appear in (or can be derived from) one or more codes of 

practice. 

1.5 If this analysis provides useful insights: 

1. Develop a traceability matrix that shows driver/code of practice relationships. 

2. Repeat for all drivers that support a given objective. 

3. Meet with domain experts to establish quantification schemes for each prac-

tice-based measure. 

4. Use predictive analytics methods (such as BBNs) to determine the most use-

ful drivers, measures, and practices. 

Bottom Up (Part 2) 2.1 Select a practice area and companion practices of interest. 

2.2 Determine which objective information needs the measures from this practice area 

might meet. 

2.3  Determine if the information needs to map to one or more drivers. 

2.4 If this analysis provides useful insights: 

1. Develop a traceability matrix that describes this relationship. 

2. Analyze one code of practice completely to see if  

o practices suggest new or modified drivers 

o a practice area does not map to any driver and is therefore (per-

haps) of lower priority or less optimal for meeting program objec-

tives than others  

We have conducted Steps 1.1, 1.2, and 1.3 of the top-down analysis (Part 1 in Table 4) for the 

software security drivers shown in Figure 14 (drivers 10, 11, and 12). In this report, we present 

the result of the top-down analysis for driver 10: 

 



 

CMU/SEI-2010-TN-025 | 39 

Driver 10: Security Requirements 

Do requirements sufficiently address security? 

Considerations: 

1. Customer, user, and stakeholder security requirements and needs 

2. Tradeoffs between security, performance, and other quality attributes 

3. Operational security requirements 

4. Information security requirements 

5. Maturity of technology used and implications for security requirements 

6. Relevant policies, standards, guidelines, and regulations 

7. Results of risk analysis of security requirements 

8. Analysis of security threats as they affect security requirements (using methods such as 
misuse/abuse cases, threat models, and attack patterns) 

9. Process for developing security requirements 

 

One derivation of practices and measures that support answering the question for driver 10 (Secu-

rity Requirements) appears in Table 5 below. 



 

CMU/SEI-2010-TN-025 | 40 

Table 5: Part 1 Example for Driver 10 Security Requirements: Do Requirements Sufficiently Address 

Security? 

Category Practice Measure Notes 

Implementation 

Measures 

Product security requirements are 

documented. 

 % of software products for which 

security requirements are/are 

not documented 

Maps to 

considerations 1, 3, 

4, and 6 

There is traceability between all sources of 

security requirements and each security 

requirement; each security requirement 

has at least one source. 

 % of security requirements 

with/without identified sources 

Maps to 

considerations 1, 3, 

4, and 6 

Maturity of technologies used is 

determined and documented. 

 % of in-use technologies 

with/without designated maturity 

ratings 

Maps to 

consideration 5 

Tradeoff analysis results are documented.  % of security requirements 

with/without documented 

tradeoff analyses 

Maps to 

consideration 2 

Security requirements risk analysis results 

are documented. Actions to address 

and/or mitigate high-priority risks are 

resolved in a timely manner. 

 % of security requirements 

with/without documented risk 

analysis results 

 Elapsed time to close actions for 

high-priority risks associated 

with security requirements 

 Elapsed time to implement 

mitigation actions for high-

priority risks associated with 

security requirements 

Maps to 

consideration 7 

Security threat analysis results and 

methods are documented. Actions to 

address high-priority analysis results are 

resolved in a timely manner. 

 % of security requirements 

with/without documented threat 

analysis results 

 Elapsed time to resolve actions 

for high-priority threat analysis 

results associated with security 

requirements 

Maps to 

consideration 8 

There is a defined process used to elicit, 

prioritize, review, and document security 

requirements. 

 % of security requirements that 

have/have not been elicited, 

prioritized, reviewed, and 

documented as a result of 

executing a defined, 

documented process 

Maps to 

consideration 9 

Effectiveness 

Measures 

Product security requirements adequately 

address customer, user, and stakeholder 

requirements and needs.  

 % of security requirements that 

meet (do not meet) customer-, 

user-, and stakeholder-defined 

thresholds for adequacy 

Need further 

expansion of how 

adequacy is 

determined 

Product security requirements adequately 

address  

 tradeoff analyses 

 operational and information 

security requirements 

 maturity of technology 

 policies, standards, guidelines, 

and regulations 

 security risk analysis results 

 threat analysis results 

 % of security requirements that 

have/have not been determined 

to address stakeholder-defined 

thresholds for adequacy for all of 

the bulleted items listed in the 

practice description 

Need further 

expansion of how 

adequacy is 

determined 

Process 

Performance 

Measures 

The process used to specify security 

requirements performs as expected. 

 Extent to which the defined 

process for specifying security 

requirements meets its 

performance criteria 

Need to define 

process performance 

criteria 



 

CMU/SEI-2010-TN-025 | 41 

Steps 1.4 and 1.5 of the top-down analysis (Part 1 in Table 4) and all steps in the bottom-up anal-

ysis (Part 2 in Table 4) will be performed in FY11. The drivers, practices, and measures of inter-

est will be informed by pilot driver assessment results and BBN modeling. We made a conscious 

decision not to take this driver/practice/measure analysis further until we had access to data to 

help guide our selection of meaningful drivers and practices. 

The final section of this report describes next steps and future directions for this research project. 

  



 

CMU/SEI-2010-TN-025 | 42 

7 Insights and Next Steps 

This section summarizes our research results for FY10, presents some surprises and insights expe-

rienced by the authors thus far, and identifies our research directions for FY11. 

7.1 Summary 

The goal of the software security measurement and analysis research project is to address the fol-

lowing three research questions: 

 Q1: How do we establish, specify, and measure justified confidence that a software product
16

 

is sufficiently secure to meet operational needs? 

 Q2: How do we measure at each phase of the development or acquisition life cycle that the 

required/desired level of security has been achieved? 

 Q3: How do we scale measurement and analysis approaches to complex environments, such 

as large, distributed systems of systems? 

As described in this report, in FY10 we have focused on addressing research question 1, which 

establishes the foundation for the remaining questions. We have defined an approach, illustrated 

by an example, for addressing research question 2. We have yet to determine our plans and ap-

proach for examining research question 3. 

This report presents a foundational set of measurement concepts, including a generic measure-

ment process. It describes how meaningful measures serve to provide the information that deci-

sion makers need when they need it and in the right form. Decision makers are those responsible 

for developing and acquiring software-reliant systems. The distributed management environment 

is the prevailing circumstance faced by today’s decision makers. Performance in these environ-

ments, including software security performance, is better analyzed using a two-tiered approach 

that incorporates system decomposition and event analysis as well as systemic analysis. Mission-

Objective-Driver Analysis is one method for conducting systemic analysis. The SEI has devel-

oped a starter set of drivers for software security, and this report presents how these can be further 

analyzed, tailored, and assessed. The report closes by defining the Integrated Measurement and 

Analysis Framework (IMAF) and methods for qualitatively and quantitatively collecting data to 

inform this framework. Such data is used to analyze software security performance. The closing 

section also introduces work in progress to address research question 2. 

7.2 Surprises and Insights 

This section includes a few insights and surprises experienced by the authors in comparing where 

we started to what we have learned in the course of conducting this research over the past seven 

months. We also speculate a bit as to what we may learn going forward.  

When we originally conceived of this effort, we intended to evaluate current practice (as 

represented by codes of practice for software security) and see what common themes emerged. 

 
16

  For example, a software application, set of applications, software-reliant system, or system of systems. 



 

CMU/SEI-2010-TN-025 | 43 

We also knew we would need to establish a method for defining what constituted adequate securi-

ty and then propose an approach for demonstrating this throughout the life cycle. Our initial (al-

beit limited) thinking was to use the work in assurance cases as the foundation. 

One early insight was that we had a rich body of existing SEI knowledge and research results to 

help frame a robust method for expressing the definition of adequate security. This informed driv-

er identification, driver analysis, and the IMAF. Assurance case research results can certainly con-

tribute to this expression and be used for collecting evidence of adequate security, but it is only 

one of several methods. 

Another insight was that we could consider more than just a single organization, single project, 

and single software-reliant system and begin to address systems of systems in distributed man-

agement environments. Of course, this ability to scale from small systems to large systems and 

from single systems to systems of systems has yet to be demonstrated, but we were able to devel-

op hypotheses about it. 

We were surprised by the lack of data related to software security. Much of what people know 

about software security seems to be based on conventional wisdom. We do see some anecdotal 

evidence backing up claims about practice, but there is little objective data. In the long term, we 

believe that our work on the IMAF will be able to provide objective data about what drives soft-

ware security. This data can then be used to support or refute claims about practice effectiveness.  

We were also surprised by our community’s inability to effectively articulate what constitutes 

success for software security. Our nonsecurity field experience has shown that program managers 

traditionally struggle when defining what constitutes success for their programs (i.e., defining 

objectives). However, they seem even less prepared to define software security objectives. We 

believe the results of this research project have real potential to establish solid, quantitative 

benchmarks for software security.  

This project represents one of the CERT Program’s first opportunities to tap into the extensive 

knowledge and experience of the SEI’s Software Engineering Measurement and Analysis team. 

The team enabled us to identify predictive analytics and leverage the power of Bayesian Belief 

Networks to provide insights regarding the use of quantitative methods. The BBN method’s abili-

ty to inform while tolerating uncertainty, incomplete and missing data, and subjective data (very 

much the current state of practice in software security) is very promising. 

That said, we believe we may find in the predictive analytics work that much of today’s conven-

tional wisdom regarding drivers and leading indicators for software security may very well not 

pan out. This type of debunking is common as we seek empirical data and quantitative signific-

ance of relationships. We may also find some new factors as leading indicators that we had not 

thought of before.    

We believe we will experience some of the key concepts espoused by Douglas Hubbard [Hubbard 

2007] and Nassim Nicholas Taleb [Taleb 2010]: 

1. More information is not always better and can often hurt the decision-making situation. 

2. There are valid approaches to trading off the value of additional information against the 

cost of collecting it, specifically Hubbard’s Applied Information Economics (AIE) me-

thod. 



 

CMU/SEI-2010-TN-025 | 44 

3. Measurement error, especially from human sources, may be far greater than we believed 

and may represent a major issue that must be solved before modeling can occur. Hubbard 

offers promising approaches to better eliciting expert opinions and conducting assess-

ments. 

7.3 Research Directions 

In FY11, we plan to tackle the following tasks: 

 Seek community feedback and improvement suggestions on this research project and this 

report. 

 In the pursuit of research question 1, seek pilot assessment data and other types of data-

gathering opportunities to improve and validate the IMAF. 

 Define a starter Bayesian Belief Network in support of one software security objective and 

its related drivers. Use assessment and data-gathering opportunities to begin populating this 

network. Introduce the use of automated tools for expressing and analyzing BBNs. 

 Conduct the two-part process for addressing research question 2 (refer to Section 6.3). Ana-

lyze the leading software security codes of practice while performing this process. 

 Explore the applicability of measurement and analysis methods in general and in related dis-

ciplines, for example, Douglas Hubbard’s methods [Hubbard 2007] and how they inform this 

work.  

 Describe the differences and similarities between this work and model-based measurement 

and analysis work, such as the Capability Maturity Modeling
®

 Integration for Development 

(CMMI
®

-DEV) [CMMI Product Team 2006] and the CERT
®

 Resilience Management Mod-

el (CERT
®

-RMM) [Caralli 2010]. We believe that the set of software security drivers may 

serve as a useful point of connection/intersection. 

 Develop materials (graphics, brochures, presentations, white papers, etc.) that provide sim-

plified explanations of complex measurement methods and aid us in communicating about 

this work, both internally and externally. 

 

 

 
®
 Capability Maturity Modeling, CMMI, CERT Resilience Management Model, and CERT

®
-RMM are registered in the 

U.S. Patent and Trademark Office by Carnegie Mellon University. 



 

CMU/SEI-2010-TN-025 | 45 

Appendix A: Standard Set of Drivers for Software Security 

This appendix provides a prototype set of driver questions for assessing software security as de-

scribed in Section 5.1.5. This set of drivers is derived from the following software security objec-

tive: When the system is deployed, security risks to the deployed system will be within an accepta-

ble tolerance. 

At this point in time, the set of drivers has not been validated through the SEI’s field-piloting ac-

tivities. The next step in the development of the drivers is to validate them through field testing. 

Once the set of drivers is validated, it can serve as an archetype that analysts can use for tailoring 

purposes. 

Programmatic Drivers 

1. Program Security Objectives: Are the program’s security objectives realistic and 

achievable? 

2. Security Plan: Does the plan for developing and deploying the system sufficiently address 

security? 

3. Contracts: Do contract mechanisms with partners, collaborators, subcontractors, and 

suppliers sufficiently address security? 

4. Security Process: Does the process being used to develop and deploy the system sufficiently 

incorporate security? 

5. Security Task Execution: Are security-related tasks and activities performed effectively and 

efficiently? 

6. Security Coordination: Are security activities within the program coordinated appropriately? 

7. External Interfaces: Do work products from partners, collaborators, subcontractors, or 

suppliers meet security requirements? 

8. Organizational and External Conditions: Are organizational and external conditions 

facilitating completion of security tasks and activities? 

9. Event Management: Is the program able to identify and manage potential events and 

changing circumstances that affect its ability to meet its software security objectives? 

Product Drivers 

10. Security Requirements: Do requirements sufficiently address security? 

11. Security Architecture and Design: Do the architecture and design sufficiently address 

security? 

12. Code Security: Is the code sufficiently secure? 

13. Operational System Security: Is the integrated system sufficiently secure to support 

operations? 



 

CMU/SEI-2010-TN-025 | 46 

14. Adoption Barriers: Have barriers to customer/user adoption of the system’s security features 

been managed appropriately? 

15. Operational Security Compliance: Will the system comply with applicable security policies, 

laws, and regulations? 

16. Operational Security Preparedness: Are people prepared to maintain the system’s security 

over time? 

17. Security Risk Tolerance: Is the security risk of the deployed system within an acceptable 

tolerance? 

  



 

CMU/SEI-2010-TN-025 | 47 

 

Driver 1: Program Security Objectives 

Are the program’s security objectives realistic and achievable? 

Considerations: 

1. Tradeoffs between security and performance 

2. Funding allocated to developing security features and controls 

3. Schedule allocated to developing security features and controls 

4. Maturity of technology used and implications for security 

5. Resources dedicated to security tasks and activities 

6. Availability of staff with security experience and expertise 

7. Appropriate security credentials of staff 

 

 

 

Driver 2: Security Plan 

Does the plan for developing and deploying the system sufficiently address security? 

Considerations: 

1. Security-related tasks and activities in the program plan 

2. Funding allocated to developing security features and controls 

3. Schedule allocated to developing security features and controls 

4. Resources dedicated to security tasks and activities 

5. Availability of staff with security experience and expertise 

6. Appropriate security credentials of staff 

7. Security-related training 

8. Definition of security roles and responsibilities 

 

 

  



 

CMU/SEI-2010-TN-025 | 48 

 

Driver 3: Contracts 

Do contract mechanisms with partners, collaborators, subcontractors, and suppliers sufficiently address 
security? 

Considerations: 

1. Contracts with each partner, collaborator, subcontractor, and supplier 

2. Alignment among the contracts of all partners, collaborators, subcontractors, and suppliers 

3. Security-related tasks and activities outlined in contracts 

4. Partner or collaborator resources dedicated to security tasks and activities 

5. Mechanisms for ensuring compliance with the terms and conditions of contracts 

6. Contingency or business continuity plans to deal with significant noncompliance issues 

 

 

Driver 4: Security Process 

Does the process being used to develop and deploy the system sufficiently incorporate security? 

Considerations: 

1. Security-related tasks and activities in the program workflow 

2. Conformance to security process models 

3. Measurements and controls for security-related tasks and activities 

4. Process efficiency and effectiveness 

5. Software security development life cycle 

6. Security-related training 

7. Compliance with security policies, laws, and regulations 

 

 

  



 

CMU/SEI-2010-TN-025 | 49 

 

Driver 5: Security Task Execution 

Are security-related tasks and activities performed effectively and efficiently? 

Considerations: 

1. Experience and expertise of management and staff 

2. Availability of staff with security experience and expertise 

3. Staff knowledge of software security methods, tools, and technologies 

4. Security-related training 

5. Experience with the software security development life cycle 

6. Methods, tools, and technologies supporting secure development 

7. Compliance with security policies, laws, and regulations 

 

 

Driver 6: Security Coordination 

Are security activities within the program coordinated appropriately? 

Considerations: 

1. Communication of security information 

2. Dependencies of security tasks and activities 

3. Relationships among partners, collaborators, subcontractors, and suppliers  

4. Alignment of security roles defined in contracts 

5. Alignment of security plans across all participants 

6. Interoperability of security processes across all participants 

7. Interoperability of methods, tools, and technologies across all participants 

8. Compliance with security policies, laws, and regulations 

9. Programmatic complexity 

 

 

  



 

CMU/SEI-2010-TN-025 | 50 

 

Driver 7: External Interfaces 

Do work products from partners, collaborators, subcontractors, or suppliers meet security 
requirements? 

Considerations: 

1. Security of applications 

2. Security of software 

3. Security of systems or subsystems 

4. Security of hardware  

5. Risk of malicious code in work products 

6. Risk of vulnerabilities in work products 

7. Potential for realization of security risks in deployed system 

8. Compliance with security policies, laws, and regulations 

 

 

Driver 8: Organizational and External Conditions 

Are organizational and external conditions facilitating completion of security tasks and activities? 

Considerations: 

1. Stakeholder sponsorship of software security (e.g., sponsors, funders, developers, customers, 
users) 

2. Strategies and actions of upper management related to software security 

3. Effect of policies, laws, and regulations on security 

4. Effects of relationships with partners, collaborators, subcontractors, and suppliers on security 

5. Effects of external (world, marketplace) conditions (technological, environmental, economic, 
political) on security 

 

 

  



 

CMU/SEI-2010-TN-025 | 51 

 

Driver 9: Event Management 

Is the program able to identify and manage potential events and changing circumstances that affect its 
ability to meet its software security objectives? 

Considerations: 

1. Expected and unexpected potential events and changing circumstances 

2. Changes in security requirements 

3. Changes in security architecture 

4. Changes in security methods, tools, or technologies 

5. The effects of staff or supplier changes on security 

6. The effects of changes in partnerships, agreements, or contracts on security 

7. Schedule slack for developing security features and controls 

8. Funding reserve for developing security features and controls 

9. Risk management plan, process, and tools 

10. Risk mitigation plans 

11. Program continuity, disaster, and contingency plans 

 

 

Driver 10: Security Requirements 

Do requirements sufficiently address security? 

Considerations: 

1. Customer, user, and stakeholder security requirements and needs 

2. Tradeoffs between security, performance, and other quality attributes 

3. Operational security requirements 

4. Information security requirements 

5. Maturity of technology used and implications for security requirements 

6. Relevant policies, standards, guidelines, and regulations 

7. Results of risk analysis of security requirements 

8. Analysis of security threats as they affect security requirements (using methods such as 
misuse/abuse cases, threat models, and attack patterns) 

9. Process for developing security requirements 

 

 

  



 

CMU/SEI-2010-TN-025 | 52 

 

Driver 11: Security Architecture and Design 

Do the architecture and design sufficiently address security? 

Considerations: 

1. Software and system architecture 

2. Tradeoffs between security, performance, and other quality attributes 

3. Maturity of technology used and implications for security architecture and design 

4. Security of COTS products 

5. Security requirements including information and operational security requirements 

6. Analysis of security threats as they affect architecture and design (using methods such as 
misuse/abuse cases, threat models, and attack patterns) 

7. Results of risk analysis of the security architecture and design 

8. Results of security vulnerability analysis 

9. Process for addressing security as part of software/system architecture and design 

10. Architecture and design reviews 

 

 

Driver 12: Code Security 

Is the code sufficiently secure? 

Considerations: 

1. Security requirements  

2. Security architecture and design 

3. Secure coding standards, guidelines, and practices 

4. Analysis of common vulnerabilities 

5. Source code reviews 

6. Static code analysis 

7. Software security testing 

8. Security issues addressed during unit testing 

9. Code interfaces and dependencies as they affect security 

10. Process for secure coding 

11. Analysis of security threats as they affect code (using methods such as misuse/abuse cases, 
threat models, and attack patterns) 

12. Analysis of common weaknesses 

13. Complexity of code 

14. Results of risk analysis of the secure code 

 

  



 

CMU/SEI-2010-TN-025 | 53 

Driver 13: Operational System Security 

Is the integrated system sufficiently secure to support operations? 

Considerations: 

1. Operational security requirements 

2. Vulnerability analysis 

3. Security risk analysis 

4. Software security testing 

5. Penetration testing 

6. Effectiveness of security features and controls 

7. Security issues addressed during integration testing 

8. Security of legacy systems 

9. Security of COTS software 

10. Disaster recovery, contingency, and business continuity plans 

 

 

Driver 14: Adoption Barriers 

Have barriers to customer/user adoption of the system’s security features been managed appropriately? 

Considerations: 

1. Stakeholder sponsorship of security 

2. Changes to operational workflows 

3. Tradeoffs between performance and security 

4. Training provided to users, operators, and maintainers 

5. Support provided to users, operators, and maintainers 

 

 

 

 

  



 

CMU/SEI-2010-TN-025 | 54 

 

Driver 15: Operational Security Compliance 

Will the system comply with applicable security policies, laws, and regulations? 

Considerations: 

1. Security-related policies affecting the operational environment 

2. Security-related laws affecting the operational environment 

3. Security-related regulations affecting the operational environment 

4. Security-related standards of care affecting the operational environment 

 

 

 

 

Driver 16: Operational Security Preparedness 

Are people prepared to maintain the system’s security over time? 

Considerations: 

1. Patching and upgrades 

2. Supplier support for security features and controls in custom software 

3. Supplier support for COTS software 

4. Supplier support for legacy systems 

5. Degree of changes to the system 

6. Unanticipated use of the system 

7. Operational policies, practices, and procedures for maintaining operational systems over time  

8. Operational staffing levels 

9. Experience and expertise of operators, maintainers, and users 

10. Security-related training for operators, maintainers, customers, and users 

11. Physical security in operational environment 

12. Ongoing mitigation of operational security risks 

13. Periodic vulnerability analysis and penetration testing 

14. Disaster recovery, contingency, and business continuity plans 

 

 

  



 

CMU/SEI-2010-TN-025 | 55 

Driver 17: Security Risk Tolerance 

Is the security risk of the deployed system within an acceptable tolerance? 

Considerations: 

1. Maturity of technology used and implications for security 

2. Security of COTS products 

3. Effectiveness of security processes, practices, and controls 

4. Security issues addressed during integration testing 

5. Security issues addressed during system testing 

6. Operational (i.e., post-deployment) security policies, practices, and procedures 

7. Risk of malicious code in deployed system 

8. Risk of vulnerabilities in deployed system 

9. Potential for realization of security risks 

10. Acceptable mitigation of risk (considering users, customers, stakeholders, and others who may 
be impacted by the system) 

11. Business continuity, disaster recovery, and contingency plans 

12. Some articulation of what constitutes an acceptable (or unacceptable) level of risk 

13. Process for managing risk (identify, analyze, mitigate) 

 

 

  



 

CMU/SEI-2010-TN-025 | 56 

 



 

CMU/SEI-2010-TN-025 | 57 

Appendix B: Related Sources and Efforts 

The following sources and efforts provide foundational work and additional details on the state of 

the practice in measuring and analyzing cyber security, information security and assurance, and 

software security and assurance. These sources have informed and will continue to inform this 

research project. 

 Practical Measurement Framework for Software Assurance [Bartol 2008]. This report pro-

vides an approach for measuring the effectiveness of achieving software assurance goals and 

objectives at an organizational, program, or project level. It addresses how to assess the de-

gree of assurance provided by software, using quantitative and qualitative methodologies and 

techniques.  

 Measuring Cyber Security and Information Assurance: State-of-the-Art Report (SOAR) [Bar-

tol 2009]. This report assesses the current state of the art in cyber security and information 

assurance measurement to facilitate further research into this subject.  

 Performance Measurement Guide for Information Security: Special Publication 800-55 Re-

vision 1 [Chew 2008]. Section 3.5.2 includes a discussion of application security measure-

ment. 

 The Center for Internet Security Consensus Information Security Metrics [CIS 2010]. See 

specifically metrics related to application security. 

 Acquisition Measurement Version 1.0 [Creel 2008]. This report provides a foundation for the 

discussion and advancement of acquisition measurement. Its primary focus is on improving 

the way in which acquisition projects and organizations manage and conduct their activities. 

A secondary focus is on management and oversight of the supplier. 

 U.S. Department of Homeland Security Software Assurance Forum Measurement Working 

Group Presentations. They are available at https://buildsecurityin.us-

cert.gov/swa/forums.html.  

 U.S. Department of Homeland Security Build Security In website measurement articles, in-

cluding ―Measures and Measurement for Secure Software Development.‖ Articles are avail-

able at https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement.html.  

  

https://buildsecurityin.us-cert.gov/swa/forums.html
https://buildsecurityin.us-cert.gov/swa/forums.html
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/measurement.html


 

CMU/SEI-2010-TN-025 | 58 

 



 

CMU/SEI-2010-TN-025 | 59 

Glossary 

acquisition program 

A collection of individual projects that work collaboratively to provide technical capabilities via a 

set of networked software products (i.e., a system of systems). 

condition 

The current state of being or existence. Conditions define an acquisition program’s current cir-

cumstances.  

distributed management environment 

Multiple, independently managed organizational entities working collaboratively to achieve a 

common mission or purpose. 

driver 

A factor that has a strong influence on the eventual outcome or result (i.e., whether or not objec-

tives will be achieved). 

measure 

A value assigned to a variable that is used to provide a decision maker with insight into a given 

characteristic or property of an entity. 

mission 

The fundamental purpose of an individual, group, or operation that defines the target, or focus, of 

the measurement and analysis effort. 

objective 

A tangible outcome or result that must be achieved when pursuing a mission. 

organizational entity 

A social unit of people that pursues collective goals, controls its own performance, shares a single 

senior manager, and operates under a single set of policies. 

potential event 

An occurrence or happening that alters an acquisition program’s current conditions. 

program 

See acquisition program. 

project 

A planned set of interrelated tasks that are executed over a fixed period of time and within certain 

constraints, such as cost or funding limitations. Unlike operations, which are repetitive and per-

manent (or semipermanent) functional tasks intended to produce products or provide services, 

projects are temporary in nature.  

http://www.businessdictionary.com/definition/task.html
http://www.businessdictionary.com/definition/executed.html
http://www.investorwords.com/3669/period.html


 

CMU/SEI-2010-TN-025 | 60 

socio-technical system 

Interrelated technical and social elements that are engaged in goal-oriented behavior. Elements of 

a socio-technical system include the people who are organized in teams or departments to do their 

work tasks and the technical systems on which people rely when performing work tasks. 

software project  

An endeavor that is intended to produce a software product, such as a software application or 

software-reliant system, within a fixed period of time and within specified budget constraints. 

system decomposition and event analysis 

An analysis approach in which a socio-technical system’s critical components are evaluated for 

potential failures. 

system of systems  

a set or arrangement of interdependent systems that are related or connected (i.e., networked) to 

provide a given capability [Levine 2003]. The following characteristics are used to differentiate a 

system of systems from a very large, complex monolithic system [Maier 1996]: 

 managerial independence—The management of each system within a system of systems is 

independent from the management of the other systems. 

 operational independence—Each system within a system of systems provides useful func-

tionality apart from other systems. 

 evolutionary character—Each system within a system of systems grows and changes inde-

pendently of other systems over time. 

 emergent behavior—Certain behaviors of a system of systems arise from the interactions 

among the individual systems and are not embodied in any of the individual systems. 

 geographic distribution—Individual systems within a system of systems are dispersed over 

large geographic areas. 

system theory 

A multidisciplinary analysis approach that considers a system as comprising a series of distinct 

but interconnected components or subsystems. 

systemic analysis 

An approach in which a system is analyzed as a whole rather than decomposing it into individual 

components and then analyzing each component separately; systemic analysis is based on system 

theory. 

systemic measures 

A measure that provides a decision maker with insight into the overall performance of a socio-

technical system. 

tactical measures 

A measure that provides a decision maker with insights into a specific task that must be per-

formed or some characteristic of a work product. 

 

http://www.investorwords.com/3669/period.html
http://en.wikipedia.org/wiki/Transdisciplinary
http://en.wikipedia.org/wiki/Approach
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Approach


 

CMU/SEI-2010-TN-025 | 61 

References 

URLs are valid as of the publication date of this document. 

[Alberts 2002] 

Alberts, Christopher & Dorofee, Audrey. Managing Information Security Risks: The OCTAVE 

Approach. Addison-Wesley, 2002. 

http://www.sei.cmu.edu/library/abstracts/books/0321118863.cfm  

[Alberts 2009] 

Alberts, Christopher & Dorofee, Audrey. A Framework for Categorizing Key Drivers of Risk 

(CMU/SEI-2009-TR-007). Software Engineering Institute, Carnegie Mellon University, 2009. 

http://www.sei.cmu.edu/library/abstracts/reports/09tr007.cfm 

[Bartol 2008] 

Bartol, Nadya. Practical Measurement Framework for Software Assurance and Information Secu-

rity. Practical Software and Systems Measurement Support Center, 2008.  

http://www.psmsc.com/Prod_TechPapers.asp 

[Bartol 2009] 

Barton, Nadya; Bates, Brian; Goertzel, Karen M.; & Winograd, Theodore. Measuring Cyber Se-

curity and Information Assurance: State-of-the-Art Report (SOAR). Information Assurance Tech-

nology Analysis Center, 2009. http://iac.dtic.mil/iatac/reports.jsp 

[Basili 1984]  

Basili, Victor R. & Weiss, David M. ―A Methodology for Collecting Valid Software Engineering 

Data.‖ IEEE Transactions on Software Engineering, SE-10, 6 (November 1984): 728-738. 

http://www.cs.umd.edu/~basili/publications/journals/J23.pdf 

[Basili 1988]  

Basili, Victor R. & Rombach, H. Dieter. ―The TAME Project: Towards Improvement-Oriented 

Software Environments.‖ IEEE Transactions on Software Engineering 14, 6 (June 1988): 758-

773. 

[Basili 1994] 

Basili, Victor R.; Caldiera, Gianluigi; & Rombach, H. Dieter. ―The Goal Question Metric Ap-

proach.‖ Encyclopedia of Software Engineering. Wiley, 1994. 

[Caralli 2010] 

Caralli, Richard A.; Allen, Julia H.; Curtis, Pamela D.; White, David W.; & Young, Lisa R. 

CERT
®

 Resilience Management Model, v1.0 (CMU/SEI-2010-TR-012). Software Engineering 

Institute, Carnegie Mellon University, 2010. 

http://www.sei.cmu.edu/library/abstracts/reports/10tr012.cfm 

http://www.psmsc.com/Prod_TechPapers.asp
http://www.cs.umd.edu/~basili/publications/journals/J23.pdf
http://www.sei.cmu.edu/library/abstracts/books/0321118863.cfm
http://www.sei.cmu.edu/library/abstracts/reports/09tr007.cfm
http://iac.dtic.mil/iatac/reports.jsp
http://www.sei.cmu.edu/library/abstracts/reports/10tr012.cfm


 

CMU/SEI-2010-TN-025 | 62 

[Chew 2008] 

Chew, Elizabeth; Swanson, Marianne; Stine, Kevin; Bartol, Nadya; Brown, Anthony; & Robin-

son, Will. Performance Measurement Guide for Information Security: Special Publication 800-55 

Revision 1. National Institute of Standards and Technology (NIST), 2008. 

http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf. Additional NIST re-

ports are available at http://csrc.nist.gov/publications/PubsSPs.html. 

[CIS 2010] 

The Center for Internet Security (CIS). CIS Consensus Information Security Metrics. 

http://cisecurity.org/en-us/?route=downloads.metrics (2010). 

[CISWG 2005] 

Corporate Information Security Working Group (CISWG). Report of the Best Practices and Me-

trics Teams. United States House of Representatives, 2005.  

http://www.educause.edu/Resources/CorporateInformationSecurityWo/153504 

[CMMI Product Team 2006] 

CMMI Product Team. CMMI for Development, Version 1.2 (CMU/SEI-2006-TR-008). Software 

Engineering Institute, Carnegie Mellon University, 2006. 

http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm  

[CNSS 2010] 

Committee on National Security Systems (CNSS). Instruction No. 4009, National Information 

Assurance Glossary. CNSS, 2010. http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf 

[Creel 2008] 

Creel, Rita; Dean, Joe; & Jones, Cheryl. Acquisition Measurement Version 1.0. Practical Software 

and Systems Measurement Support Center, 2008.  http://www.psmsc.com/Prod_TechPapers.asp 

[Dorofee 2008] 

Dorofee, Audrey; Marino, Lisa; & Alberts, Christopher. Lessons Learned Applying the Mission 

Diagnostic (CMU/SEI-2008-TN-004). Software Engineering Institute, Carnegie Mellon Universi-

ty, 2008. http://www.sei.cmu.edu/library/abstracts/reports/08tn004.cfm 

[GAO 1999] 
United States General Accounting Office (GAO). Information Security Risk Assessment: Practic-

es of Leading Organizations (GAO/AIMD-00-33). GAO, 1999. 

http://www.gao.gov/special.pubs/ai00033.pdf 

[Hubbard 2007] 

Hubbard, Douglas W. How to Measure Anything: Finding the Value of ―Intangibles‖ in Business. 

John Wiley & Sons, 2007. 

[ISO 2007] 

International Organization for Standardization. ISO/IEC 15939:2007, Systems and Software Engi-

neering – Measurement Process, 2nd ed. ISO, 2007. 

http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
http://csrc.nist.gov/publications/PubsSPs.html
http://cisecurity.org/en-us/?route=downloads.metrics
http://www.educause.edu/LibraryDetailPage/666&ID=CSD3661
http://www.educause.edu/LibraryDetailPage/666&ID=CSD3661
http://www.educause.edu/Resources/CorporateInformationSecurityWo/153504
http://www.sei.cmu.edu/library/abstracts/reports/06tr008.cfm
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
http://www.psmsc.com/Prod_TechPapers.asp
http://www.sei.cmu.edu/library/abstracts/reports/08tn004.cfm
http://www.gao.gov/special.pubs/ai00033.pdf


 

CMU/SEI-2010-TN-025 | 63 

[Leveson 2004] 

Leveson, Nancy. ―A New Accident Model for Engineering Safer Systems.‖ Safety Science 42, 4 

(April 2004): 237-270. http://sunnyday.mit.edu/accidents/safetyscience-single.pdf 

[Levine 2003] 

Levine, Linda; Meyers, B. Craig; Morris, Ed; Place, Patrick R. H.; & Plakosh, Daniel. Proceed-

ings of the System of Systems Interoperability Workshop (February 2003) (CMU/SEI-2003-TN-

016). Software Engineering Institute, Carnegie Mellon University, 2003. 

http://www.sei.cmu.edu/reports/03tn016.pdf 

[Maier 1996] 

Maier, M. ―Architecting Principles for Systems-of-Systems,‖ 567-574. Proceedings of the Sixth 

Annual International Symposium of INCOSE. Boston, MA, July 7-11, 1996. INCOSE, 1996. 

[McGarry 2002] 

McGarry, John; Card, David; Jones, Cheryl; Layman, Beth; Clark, Elizabeth; Dean, Joseph; & 

Hall, Fred. Practical Software Measurement: Objectives for Decision Makers. Addison-Wesley, 

2002. 

[McGraw 2010] 

McGraw, Gary; Chess, Brian; & Migues, Sammy. Building Security In Maturity Model BSIMM 

v2.0. http://www.bsimm2.com/ (2010). 

[Mead 2010] 

Mead, Nancy R.; Allen, Julia H.; Ardis, Mark A.; Hilburn, Thomas B.; Kornecki, Andrew J.; Lin-

ger, Richard C.; & McDonald, James. Software Assurance Curriculum Project Volume I: Master 

of Software Assurance Reference Curriculum (CMU/SEI-2010-TR-005). Software Engineering 

Institute, Carnegie Mellon University, 2010. 

http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm 

[OpenSAMM 2009] 

OpenSAMM Project. Software Assurance Maturity Model (SAMM) v1.0. 

http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model (2009). 

[Park 1996] 

Park, Robert; Goethert, Wolfhart; & Florac, William. Goal-Driven Software Measurement 

—A Guidebook (Handbook CMU/SEI-96-HB-002). Software Engineering Institute, Carnegie 

Mellon University, 1996. 

[Rombach 1989]  

Rombach, H. Dieter & Ulery, Bradford T. ―Improving Software Maintenance Through Measure-

ment.‖ Proceedings of the IEEE 77, 4 (April 1989): 581-595. 

[SEMA 2009] 

Software Engineering Measurement and Analysis (SEMA) Group. Measurement and Analysis 

Infrastructure Diagnostic (MAID) Evaluation Criteria, Version 1.0 (CMU/SEI-2009-TR-022). 

Software Engineering Institute, Carnegie Mellon University, 2009. 

http://www.sei.cmu.edu/library/abstracts/reports/09tr022.cfm 

http://www.bsimm2.com/
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://sunnyday.mit.edu/accidents/safetyscience-single.pdf
http://www.sei.cmu.edu/reports/03tn016.pdf
http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm
http://www.sei.cmu.edu/library/abstracts/reports/09tr022.cfm


 

CMU/SEI-2010-TN-025 | 64 

[SEI 2010] 

Software Engineering Institute. Measurement & Analysis. http://www.sei.cmu.edu/measurement 

(2010). 

[Stamatis 2003] 

Stamatis, D. H. Failure Mode and Effect Analysis: FMEA from Theory to Execution, 2
nd

 revised 

and expanded ed. ASQ Quality Press, 2003. 

[Taleb 2010] 

Taleb, Nassim Nicholas. The Black Swan, 2nd ed. Random House, 2010. 

[WEIS 2010] 

The Ninth Workshop on the Economics of Information Security (WEIS 2010). Harvard University, 

June 2010. http://weis2010.econinfosec.org/index.html. Agendas and papers presented from prior 

WEIS events are available online. 

 

 

http://www.sei.cmu.edu/measurement
http://weis2010.econinfosec.org/index.html


 

 

REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY 

(Leave Blank) 

2. REPORT DATE 

September 2010 

3. REPORT TYPE AND DATES 

COVERED 

Final 

4. TITLE AND SUBTITLE 

Integrated Measurement and Analysis Framework for Software Security 

5. FUNDING NUMBERS 

FA8721-05-C-0003 

6. AUTHOR(S) 

Christopher Alberts, Julia Allen, Robert Stoddard 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 

Carnegie Mellon University 

Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 

CMU/SEI-2010-TN-025 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 

AGENCY REPORT NUMBER 

 

11. SUPPLEMENTARY NOTES 

 

12A DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 

 

13. ABSTRACT (MAXIMUM 200 WORDS) 

In today’s business and operational environments, multiple organizations routinely work collaboratively to acquire, develop, deploy, and 

maintain technical capabilities via a set of interdependent, networked systems. Measurement in these distributed management environ-

ments can be an extremely challenging problem. The CERT® Program, part of Carnegie Mellon University’s Software Engineering Insti-

tute (SEI), is developing the Integrated Measurement and Analysis Framework (IMAF) to enable effective measurement in distributed 

environments, including acquisition programs, supply chains, and systems of systems. The IMAF defines an approach that integrates 

subjective and objective data from multiple sources (targeted analysis, reports, and tactical measurement) and provides decision makers 

with a consolidated view of current conditions. This report is the first in a series that addresses how to measure software security in 

complex environments. It poses several research questions and hypotheses and presents a foundational set of measurement concepts. 

It also describes how meaningful measures provide the information that decision makers need when they need it and in the right form. 

Finally, this report provides a conceptual overview of the IMAF, describes methods for qualitatively and quantitatively collecting data to 

inform the framework, and suggests how to use the IMAF to derive meaningful measures for analyzing software security performance. 

 

14. SUBJECT TERMS 

software security, measurement, measure, distributed environment, systemic analysis, Baye-

sian Belief Network 

15. NUMBER OF PAGES 

76 

16. PRICE CODE 

 

17. SECURITY CLASSIFICATION OF 

REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 

OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 

OF ABSTRACT 

Unclassified 

20. LIMITATION OF 

ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 
298-102 

 

 


	Integrated Measurement and Analysis Framework for Software Security
	Integrated Measurement and Analysis Framework for Software Security
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Measurement Concepts
	3 Distributed Management Environments
	4 Analyzing Performance in a Distributed Management Environment
	5 Mission-Objective-Driver (MOD) Analysis
	6 Integrated Measurement and Analysis Framework (IMAF)
	7 Insights and Next Steps
	Appendix A: Standard Set of Drivers for Software Security
	Appendix B: Related Sources and Efforts
	Glossary
	References




